

Projekt:

Stadt Meckenheim - Verkehrsgutachten L 261 / L 158 / K 53

Verkehrszählung vom:

17.03.2010

in der Zeit von:

6-10 Uhr und 15-19 Uhr

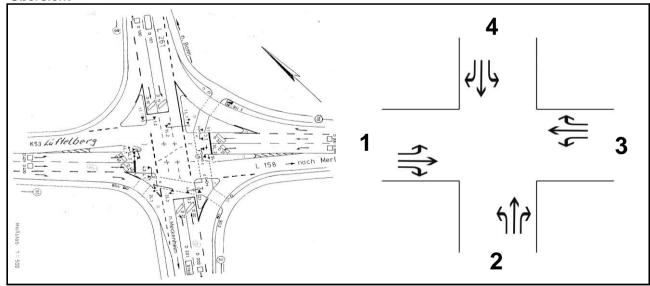
Auswertung des Zählstandortes

Nr.

-

Lage <u>L 261 / L 158 / K 53</u>

Zählung erfolgte an:


Knoten - 4-armig

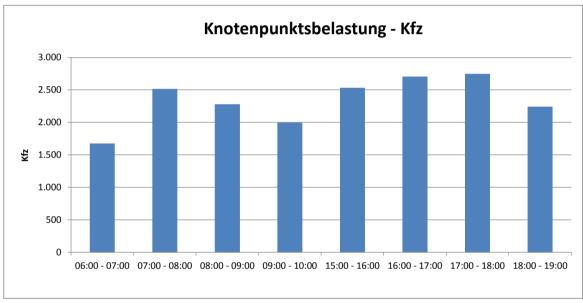
Richtungsangaben

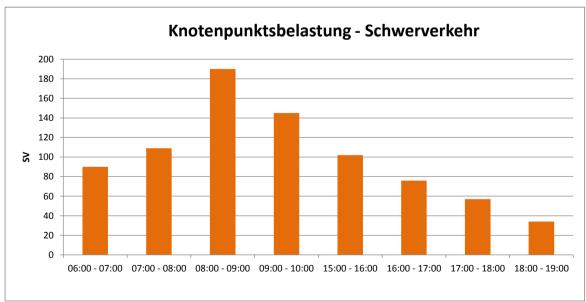
Straßenname

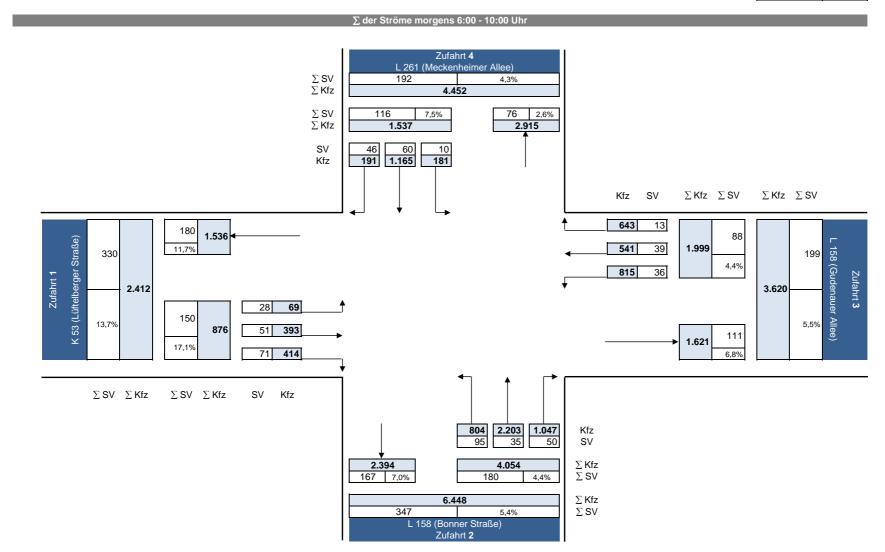
- 1 K 53 (Lüftelberger Straße)
- 2 L 158 (Bonner Straße)
- 3 L 158 (Gudenauer Allee)
- 4 L 261 (Meckenheimer Allee)

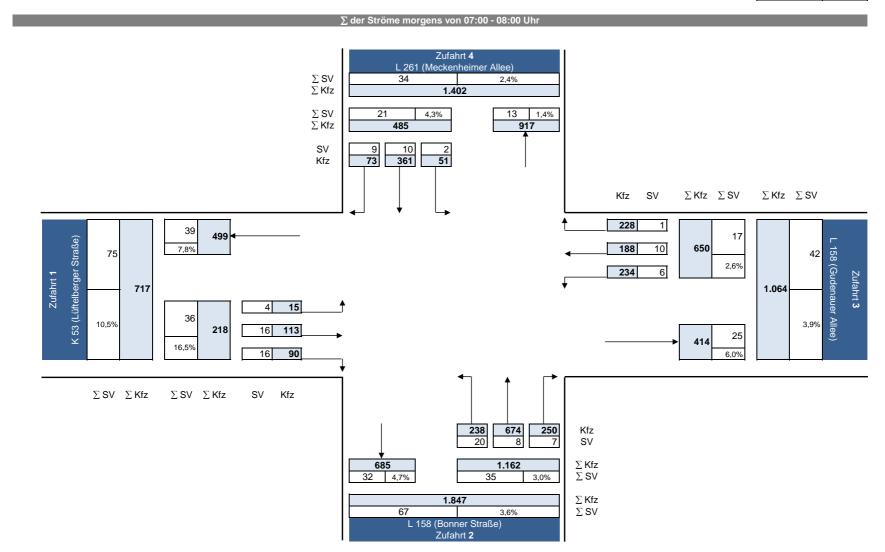
Übersicht

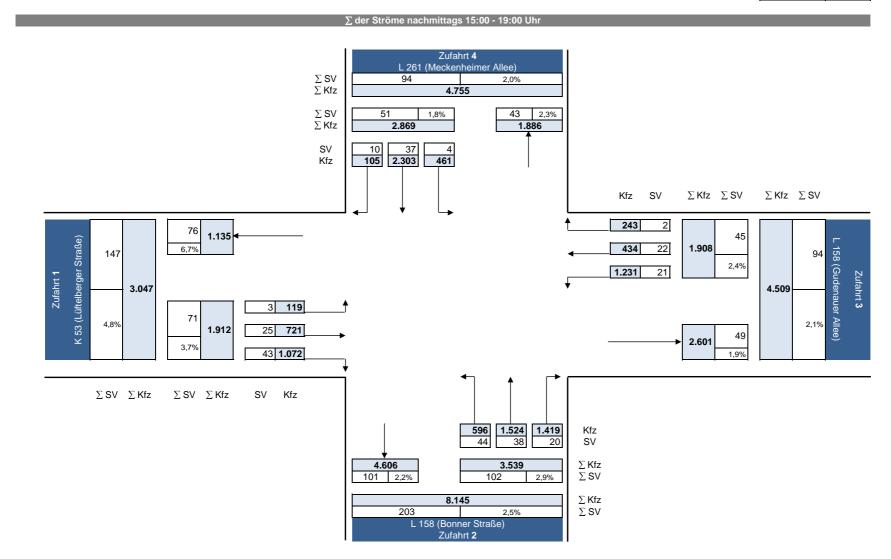
Verkehrszählung am

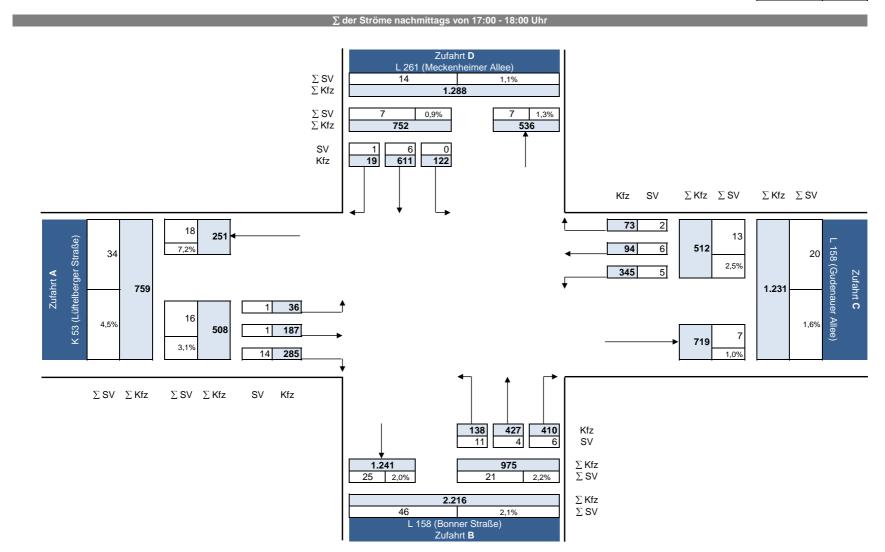

17.03.2010


Standort-Nr.


Übersicht über die Knotenpunktsbelastungen


					S	Summe de	er Zufahrt	en				
von - bis	Rad	Pkw	Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
06:00 - 07:00	2	1512	0	74	41	35	14	1.676	150	8,9	90	5,4
07:00 - 08:00	0	2219	0	187	52	41	16	2.515	280	11,1	109	4,3
08:00 - 09:00	0	1924	0	166	89	86	15	2.280	341	15,0	190	8,3
09:00 - 10:00	0	1673	0	177	65	73	7	1.995	315	15,8	145	7,3
15:00 - 16:00	0	2245	0	187	59	37	6	2.534	283	11,2	102	4,0
16:00 - 17:00	0	2454	0	175	35	34	7	2.705	244	9,0	76	2,8
17:00 - 18:00	1	2564	0	126	25	24	8	2.747	175	6,4	57	2,1
18:00 - 19:00	0	2139	0	69	19	13	2	2.242	101	4,5	34	1,5
Σ 8 Stunden	3	16.730	0	1.161	385	343	75	18.694	1.889	10,1	803	4,3


Σ 15-19 Uhr	1	9.402	0	557	138	108	23	10.228	803	7,9	269	2,6
HF gesamt	3,0	3,2	3,2	3,2	5,3	5,3	5,0					
Tagesverkehr	3	30.086	0	1.782	731	572	115	33.288	3.086	9,3	1.419	4,3



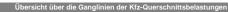
Stadt Meckenheim - Verkehrsgutachten L 261 / L 158 / K 53 Verkehrszählung am 17.03.2010

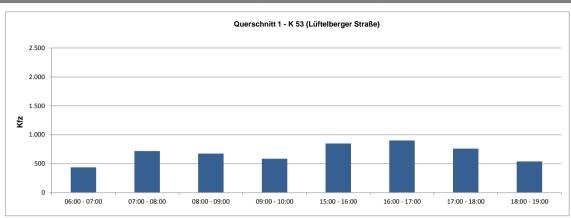
Standort-Nr.

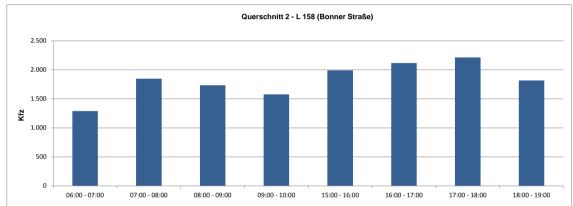
Übersicht über die Querschnittsbelastungen

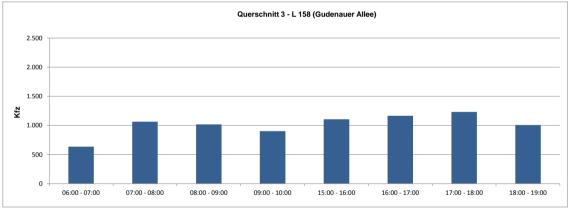
					Quei	rschnitt 1		K 53 (Lül	telberger	Straße)		
von - bis	Rad	Pkw	Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
06:00 - 07:00	2	354	0	28	22	27	4	435	77	17,7	53	12,2
07:00 - 08:00	0	546	0	96	33	34	8	717	163	22,7	75	10,5
08:00 - 09:00	0	466	0	88	46	69	5	674	203	30,1	120	17,8
09:00 - 10:00	0	405	0	99	25	55	2	586	179	30,5	82	14,0
15:00 - 16:00	0	719	0	80	22	26	1	848	128	15,1	49	5,8
16:00 - 17:00	0	769	0	90	17	24	1	901	131	14,5	42	4,7
17:00 - 18:00	1	684	0	41	11	20	3	759	72	9,5	34	4,5
18:00 - 19:00	0	497	0	20	11	9	2	539	40	7,4	22	4,1
Σ 8 Stunden	3	4.440	0	542	187	264	26	5.459	993	18,2	477	8,7
Σ 15-19 Uhr	1	2.669	0	231	61	79	7	3.047	371	12,2	147	4,8
HF gesamt	3,0	3,2	3,2	3,2	5,3	5,3	5,0					
Tagesverkehr	3	8.541	0	739	323	419	35	10.057	1.481	14,7	777	7,7

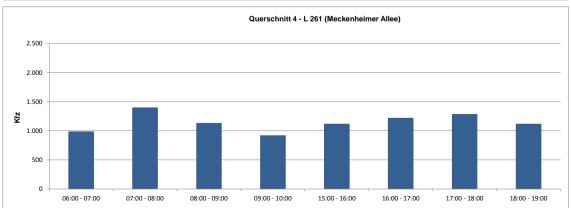
					Quei	rschnitt 2		L 158 (B	onner Stra	aße)		
von - bis	Rad	Pkw	Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
06:00 - 07:00	1	1182	0	47	23	25	14	1.291	95	7,4	62	4,8
07:00 - 08:00	0	1653	0	127	32	24	11	1.847	183	9,9	67	3,6
08:00 - 09:00	0	1500	0	118	59	45	11	1.733	222	12,8	115	6,6
09:00 - 10:00	0	1334	0	140	47	49	7	1.577	236	15,0	103	6,5
15:00 - 16:00	0	1757	0	156	47	27	5	1.992	230	11,5	79	4,0
16:00 - 17:00	0	1936	0	130	24	22	7	2.119	176	8,3	53	2,5
17:00 - 18:00	0	2067	0	103	21	18	7	2.216	142	6,4	46	2,1
18:00 - 19:00	0	1742	0	51	14	9	2	1.818	74	4,1	25	1,4
Σ 8 Stunden	1	13.171	0	872	267	219	64	14.593	1.358	9,3	550	3,8
Σ 15-19 Uhr	0	7.502	0	440	106	76	21	8.145	622	7,6	203	2,5
HF desamt	3.0	3.2	3.2	3.2	5.3	5.3	5.0					

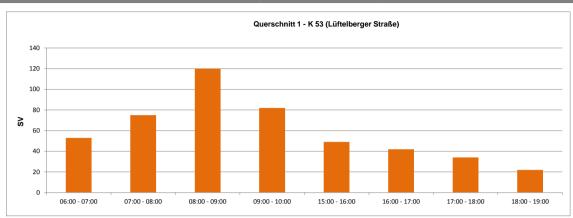

Σ 15-19 Uhr	U	7.502	0	440	106	76	21	8.145	622	7,6	203	2,5
HF gesamt	3,0	3,2	3,2	3,2	5,3	5,3	5,0					
Tagesverkehr	0	24.006	0	1.408	562	403	105	26.484	2.373	9,0	1.070	4,0

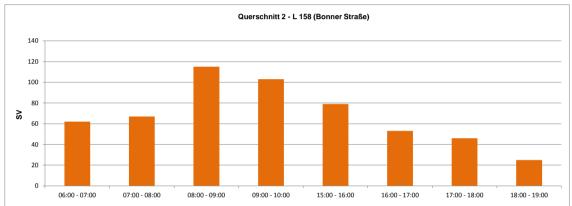

					Que	rschnitt 3		L 158 (G	udenauer	Allee)		
von - bis	Rad	Pkw/Krad	Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
06:00 - 07:00	0	568	0	32	23	3	10	636	58	9,1	36	5,7
07:00 - 08:00	0	950	0	72	17	15	10	1.064	104	9,8	42	3,9
08:00 - 09:00	0	866	0	77	39	25	10	1.017	141	13,9	74	7,3
09:00 - 10:00	0	793	0	63	31	13	3	903	107	11,8	47	5,2
15:00 - 16:00	0	999	0	72	22	11	2	1.106	105	9,5	35	3,2
16:00 - 17:00	0	1070	0	68	15	10	3	1.166	93	8,0	28	2,4
17:00 - 18:00	0	1153	0	58	9	5	6	1.231	72	5,8	20	1,6
18:00 - 19:00	0	961	0	34	8	3	0	1.006	45	4,5	11	1,1
Σ 8 Stunden	0	7.360	0	476	164	85	44	8.129	725	8,9	293	3,6
Σ 15-19 Uhr	0	4.183	0	232	54	29	11	4.509	315	7,0	94	2,1

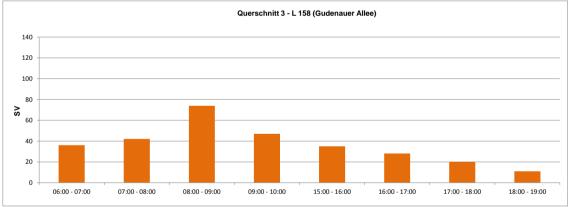

Σ 15-19 Uhr	0	4.183	0	232	54	29	11	4.509	315	7,0	94	2,1
HF gesamt	3,0	3,2	3,2	3,2	5,3	5,3	5,0					
Tagesverkehr	0	13.386	0	742	286	154	55	14.623	1.182	8,1	495	3,4

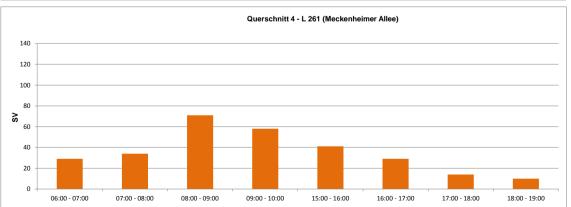

					Que	rschnitt 4		L 261 (M	eckenhei	mer Allee)		
von - bis	Rad	Pkw/Krad	Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
06:00 - 07:00	1	920	0	41	14	15	0	990	70	7,1	29	2,9
07:00 - 08:00	0	1289	0	79	22	9	3	1.402	110	7,8	34	2,4
08:00 - 09:00	0	1016	0	49	34	33	4	1.136	116	10,2	71	6,3
09:00 - 10:00	0	814	0	52	27	29	2	924	108	11,7	58	6,3
15:00 - 16:00	0	1015	0	66	27	10	4	1.122	103	9,2	41	3,7
16:00 - 17:00	0	1133	0	62	14	12	3	1.224	88	7,2	29	2,4
17:00 - 18:00	1	1224	0	50	9	5	0	1.288	64	5,0	14	1,1
18:00 - 19:00	0	1078	0	33	5	5	0	1.121	43	3,8	10	0,9
Σ 8 Stunden	2	8.489	0	432	152	118	16	9.207	702	7,6	286	3,1


Σ 15-19 Uhr	1	4.450	0	211	55	32	7	4.755	298	6,3	94	2,0
HF gesamt	3,0	3,2	3,2	3,2	5,3	5,3	5,0					
Tagesverkehr	3	14.240	0	675	292	170	35	15.411	1.136	7,4	496	3,2









Stadt Meckenheim - Verkehrsgutachten L 261 / L 158 / K 53 Verkehrszählung am 17.03.2010

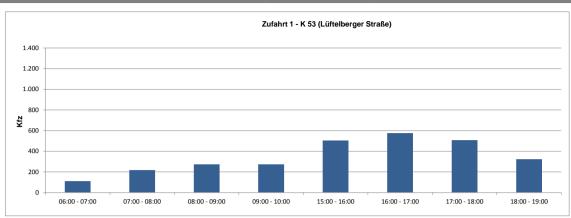
Standort-Nr.

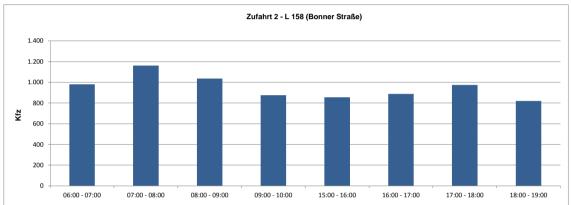
Übersicht über die Zufahrtsbelastungen

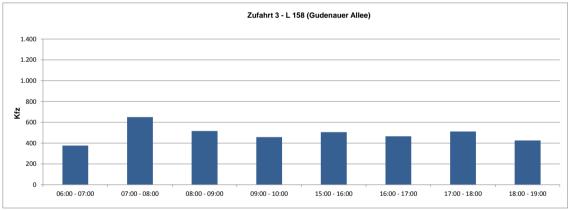
						Zufahrt 1		K 53 (Lü	ftelberger	Straße)		
von - bis	Rad	Pkw	Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
06:00 - 07:00	1	76	0	11	12	12	0	111	35	31,5	24	21,6
07:00 - 08:00	0	134	0	48	21	11	4	218	80	36,7	36	16,5
08:00 - 09:00	0	170	0	48	24	28	4	274	100	36,5	56	20,4
09:00 - 10:00	0	190	0	49	15	18	1	273	82	30,0	34	12,5
15:00 - 16:00	0	443	0	39	9	13	1	505	61	12,1	23	4,6
16:00 - 17:00	0	510	0	46	9	11	0	576	66	11,5	20	3,5
17:00 - 18:00	0	470	0	22	7	8	1	508	37	7,3	16	3,1
18:00 - 19:00	0	304	0	7	6	5	1	323	18	5,6	12	3,7
Σ 8 Stunden	1	2.297	0	270	103	106	12	2.788	479	17,2	221	7,9
Σ 15-19 Uhr	0	1.727	0	114	31	37	3	1.912	182	9,5	71	3,7
HF gesamt	3,0	3,2	3,2	3,2	5,3	5,3	5,0					
Tagesverkehr	0	5.526	0	365	164	196	15	6.267	725	11.6	375	6.0

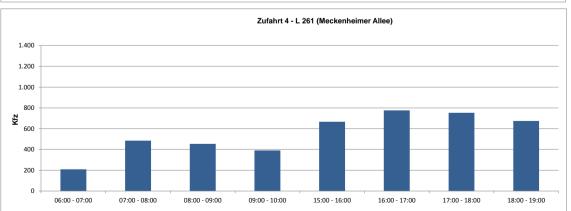
						Zufahrt 2	-	L 158 (B	onner Str	aße)		
von - bis	Rad	Pkw	Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
06:00 - 07:00	0	909	0	30	14	14	14	981	58	5,9	42	4,3
07:00 - 08:00	0	1055	0	72	15	14	6	1.162	101	8,7	35	3,0
08:00 - 09:00	0	916	0	70	25	22	3	1.036	117	11,3	50	4,8
09:00 - 10:00	0	758	0	64	24	26	3	875	114	13,0	53	6,1
15:00 - 16:00	0	746	0	67	25	15	3	856	107	12,5	43	5,0
16:00 - 17:00	0	803	0	62	8	12	3	888	82	9,2	23	2,6
17:00 - 18:00	0	914	0	40	9	10	2	975	59	6,1	21	2,2
18:00 - 19:00	0	782	0	23	10	4	1	820	37	4,5	15	1,8
Σ 8 Stunden	0	6.883	0	428	130	117	35	7.593	675	8,9	282	3,7
Σ 15-19 Uhr	0	3.245	0	192	52	41	9	3.539	285	8,1	102	2,9

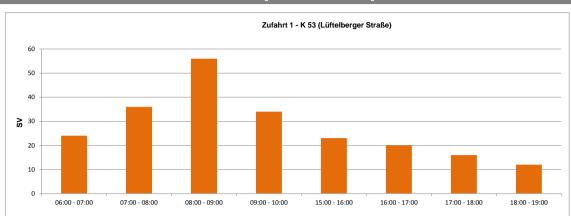
Σ 15-19 Uhr	0	3.245	0	192	52	41	9	3.539	285	8,1	102	2,9
HF gesamt	3,0	3,2	3,2	3,2	5,3	5,3	5,0					
Tagesverkehr	0	10.384	0	614	276	217	45	11.536	1.107	9,6	538	4,7

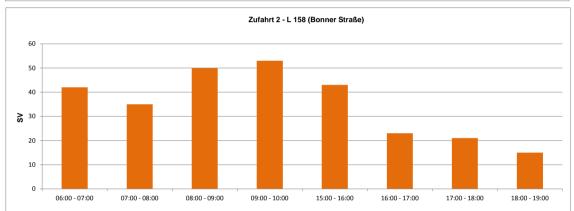

						Zufahrt 3	-	L 158 (G	udenauer	Allee)		
von - bis	Rad	Pkw/Krad	Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
06:00 - 07:00	0	346	0	19	9	2	0	376	30	8,0	11	2,9
07:00 - 08:00	0	601	0	32	5	9	3	650	46	7,1	17	2,6
08:00 - 09:00	0	445	0	29	20	15	7	516	64	12,4	42	8,1
09:00 - 10:00	0	408	0	31	12	5	1	457	48	10,5	18	3,9
15:00 - 16:00	0	446	0	45	9	5	1	506	59	11,7	15	3,0
16:00 - 17:00	0	424	0	27	9	3	2	465	39	8,4	14	3,0
17:00 - 18:00	0	470	0	29	4	4	5	512	37	7,2	13	2,5
18:00 - 19:00	0	407	0	15	1	2	0	425	18	4,2	3	0,7
Σ 8 Stunden	0	3.547	0	227	69	45	19	3.907	341	8,7	133	3,4
E 45 40 111	•	4 7 4 7	^	110	00		٥	4 000	450	0.0	45	0.4

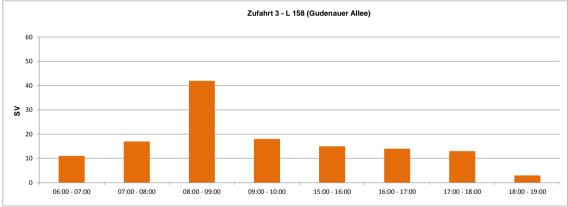

Σ 15-19 Uhr	0	1.747	0	116	23	14	8	1.908	153	8,0	45	2,4
HF gesamt	3,0	3,2	3,2	3,2	5,3	5,3	5,0					
Tagesverkehr	0	5.590	0	371	122	74	40	6.198	567	9,2	236	3,8

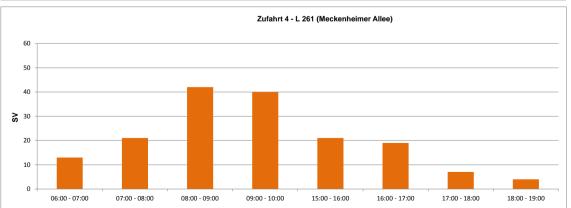

						Zufahrt 4	-	L 261 (M	eckenhei	mer Allee))	
von - bis	Rad	Pkw/Krad	Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
06:00 - 07:00	1	181	0	14	6	7	0	208	27	13,0	13	6,3
07:00 - 08:00	0	429	0	35	11	7	3	485	53	10,9	21	4,3
08:00 - 09:00	0	393	0	19	20	21	1	454	60	13,2	42	9,3
09:00 - 10:00	0	317	0	33	14	24	2	390	71	18,2	40	10,3
15:00 - 16:00	0	610	0	36	16	4	1	667	56	8,4	21	3,1
16:00 - 17:00	0	717	0	40	9	8	2	776	57	7,3	19	2,4
17:00 - 18:00	1	710	0	35	5	2	0	752	42	5,6	7	0,9
18:00 - 19:00	0	646	0	24	2	2	0	674	28	4,2	4	0,6
Σ 8 Stunden	2	4.003	0	236	83	75	9	4.406	394	8,9	167	3,8


,												
Σ 15-19 Uhr	1	2.683	0	135	32	16	3	2.869	183	6,4	51	1,8
HF gesamt	3,0	3,2	3,2	3,2	5,3	5,3	5,0					
Tagesverkehr	3	8.586	0	432	170	85	15	9.287	686	7,4	269	2,9









Stadt Meckenheim - Verkehrsgutachten L 261 / L 158 / K 53 Standort-Nr. 17.03.2010 am: Zufahrt 1 - Blatt 1 K 53 (Lüftelberger Straße) von 1 nach 2 von 1 nach 3 --> L 158 (Bonner Straße) K 53 (Lüftelberger Straße) K 53 (Lüftelberger Straße) L 158 (Gudenauer Allee) --> Zeit Rad Pkw / Krad Lkw Lz Bus Σ Kfz ΣGV ΣSV Rad Pkw / Krad Lw Lkw Lz Bus Σ Kfz ΣGV ΣSV von - bis 6:00 - 6:15 6:15 - 6:30 6:30 - 6:45 6:45 - 7:00 7:00 - 7:15 7:15 - 7:30 7:30 - 7:45 7:45 - 8:00 8:00 - 8:15 8:15 - 8:30 8:30 - 8:45 8:45 - 9:00 9:00 - 9:15 9:15 - 9:30 9:30 - 9:45 9:45 - 10:00 15:00 - 15:15 15:15 - 15:30 15:30 - 15:45 15:45 - 16:00 16:00 - 16:15 16:15 - 16:30 16:30 - 16:45 16:45 - 17:00 17:00 - 17:15 Ω 17:15 - 17:30 17:30 - 17:45 17:45 - 18:00 18:00 - 18:15 18:15 - 18:30 18:30 - 18:45

18:45 - 19:00

									7	Dlatt	4							
									Zufahrt 1 3 (Lüftelb		•							
								K 9	3 (Luiteib	erder Str	aisei							
				von	1 nach	2							von	1 nach	3			
		K 5	3 (Lüftelber	ger Straße)	>	L 158 (Bonr	ner Straße)				K 5	3 (Lüftelber	ger Straße)	> L	_ 158 (Gude	enauer Allee)		
Zeit von - bis	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	ΣSV	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	ΣSV
VOIT - DIS				Stu	ndenwer	te							Stu	ındenwert	e			
6:00 - 7:00	1	35	4	2	7	0	48	13	9		0 36	7	6	1	0	50	14	7
6:15 - 7:15	0	35	5	4	7	0	Ų.	16	11		0 44	8	7	2	2	63	17	11
6:30 - 7:30 6:45 - 7:45	0		4 15	5 6	7	0	49 63	16 27	12		0 49 0 57	13 16	10 8	3	3	78 87	26 27	16 14
7:00 - 8:00			22	9	6	1	90	37	16		0 74	23	8	5	3	113	36	16
7:15 - 8:15	0	73	27	15	6	1	122	48	22		0 79	32	6	6	1	124	44	13
7:30 - 8:30	0		30	19	8	3	142	57	30		0 89	32	4	4	1	130	40	9
7:45 - 8:45	0		24	19	13	2	140	56	34		0 92	30	8	7	1	138	45	16
8:00 - 9:00	0		19	16	14	2		49	32		0 87	27	7	8	1	.00	42	16
8:15 - 9:15 8:30 - 9:30		71 79	25 24	8 5	13 12	2	119 121	46 41	23 18		0 89 0 77	21 18	7	6	1	124 113	34 36	14 18
8:45 - 9:45	0		30	5	9	1	135	44	15		0 73	14	5	9	0	101	28	14
9:00 - 10:00	0	101	34	5	8	1	149	47	14		0 78	10	6	6	0	100	22	12
15:00 - 16:00	0	254	23	5	9	0	291	37	14		0 158	15	3	3	1	180	21	7
15:15 - 16:15	0		24	4	9	0	299	37	13		0 162	13	2	5	1	183	20	8
15:30 - 16:30 15:45 - 16:45	0		21	5	5	0	277	31	10		0 178	15	2	4	0	199	21	6
	0	202	26	5	5	0	0.0	36	10		0 198 0 203	20	3	5 7	0	226 235	28	8
16:00 - 17:00 16:15 - 17:15			25	3	4	0	323	34 28	9		0 216	21	- 4	5	0	246	32	11
16:30 - 17:30	0		16	3 1	7	1	325	24	9		0 203	16	3	3	0	225	22	- 6
16:45 - 17:45	Ö		13	3	7	1	280	23	11		0 174	9	1	2	0	186	12	3
17:00 - 18:00	0	258	13	6	7	1	285	26	14		0 177	9	1	0	0	187	10	1
17:15 - 18:15	0		11	7	6	1	254	24	14		0 161	5	3	1	0	170	9	4
17:30 - 18:30 17:45 - 18:45	0		9	7	4 5	1	226 208	20 13	12		0 138 0 132	3 8	4 5	1	0	146 146	8 14	5
18:00 - 19:00			1	1	<u>5</u>	1		13	10 6		0 132	6	5 5	1	0		12	6
10.00 - 19.00		100				-	173	U	٩		107				U U	113	12	- 0
06:00 - 10:00	1	264	79	32	35	4	414	146	71		0 275	67	27	20	4	393	114	51
15:00 - 19:00	0	967	62	17	24	2	1.072	103	43		0 645	51	13	11	1	721	75	25

Standort-Nr.

Zufahrt 1 - Blatt 2

K 53 (Lüftelberger Straße)

		von	1 nacl	h 4	4	

K 53 (Lüftelberger Straße) --> L 261 (Meckenheimer Allee)

Summe in der Zufahrt

Zeit von - bis	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	ΣSV	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
6:00 - 6:15	0	1	0	0	1	0	2	1	1		1 13	1	2	3	0	19	6	31,6	5	26,3
6:15 - 6:30	0	2	0	2	1	0	5	3	3		0 27	2	2	3	0	34	7	20,6	5	14,7
6:30 - 6:45	0	1	0	2	0	0	3	2	2		0: 20:	3	4	2	0	29	9	31,0	6	20,7
6:45 - 7:00	0	1	0	0	2	0	3	2	2		0 16	5	4	4	0	29	13	44,8	8	27,6
7:00 - 7:15	0	4	0	2	0	0	6	2	2		0 24	3	7	3	2	39	13	33,3	12	30,8
7:15 - 7:30	0	1	0	1	0	0	2	1	1		0 29	6	5	3	1	44	14	31,8	9	20,5
7:30 - 7:45	0	2	3	1	0	0	6	4	1		0 31	20	2	1	1	55	23	41,8	4	7,3
7:45 - 8:00	0	1	0	0	0	0	1	0	0		0 50	19	7	4	0	80	30	37,5	11	13,8
8:00 - 8:15	0	1	2	1	2	0	6	5	3		0 47	19	10	6	0	82	35	42,7	16	19,5
8:15 - 8:30	0	1	0	0	1	0	2	1	1		0 48	9	6	4	3	70	19	27,1	13	18,6
8:30 - 8:45	0	2	0	0	2	0	4	2	2		0 34	9	5	11	0	59	25	42,4	16	27,1
8:45 - 9:00	0	3	0	0	1	1	5	1	2		0 41	11	3	7	1	63	21	33,3	11	17,5
9:00 - 9:15	0	3	1		1	0	5	2	1		0 46	18	1	2	0	67	21	31,3	3	4,5
9:15 - 9:30	0	5	3	1	1	0	10	5	2		0 48	8	6	6	1	69	20	29,0	13	18,8
9:30 - 9:45	0	2	0	0	2	0	4	2	2		0 41	11	1	8	0	61	20	32,8	9	14,8
9:45 - 10:00	0	1	1	3	0	0	5	4	3		0 55	12	7	2	0	76	21	27,6	9	11,8
15:00 - 15:15	0	9	0	0	0	0	9	0	0		0 114	10	5	2	0	131	17	13,0	7	5,3
15:15 - 15:30	0	13	0	0	0	0	13	0	0		0 131	17	1	7	1	157	25	15,9	9	5,7
15:30 - 15:45	0	5	1	0	0	0	6	1	0		0 105	6	2	1	0	114	9	7,9	3	2,6
15:45 - 16:00	0	4	0	1	1	0	6	2	2		0 93	6	1	3	0	103	10	9,7	4	3,9
16:00 - 16:15	0	3	0	0	0	0	3	0	0			9	3	4	0	136	16	11,8	7	5,1
16:15 - 16:30	0	3	0	0	0	0	3	0	0		0 121	16	2	2	0	141	20	14,2	4	2,8
16:30 - 16:45	0	6	0	0	0	0	6	0	0		0 162	15	3	2	0	182	20	11,0	5	2,7
16:45 - 17:00	0	6	0	0	0	0	6	0	0		0 107	6	1	3	0	117	10	8,5	4	3,4
17:00 - 17:15	0	7	0	0	0	0	7	0	0		0 139	6	0	2	0	147	8	5,4	2	1,4
17:15 - 17:30	0	10	0	0	0	0	10	0	0		0 124	5	0	3	1	133	8	6,0	4	3,0
17:30 - 17:45	0	2	0	0	1	0	3	1	1		0 85	5	3	2	0	95	10	10,5	5	5,3
17:45 - 18:00	0	16	0	0	0	0	16	0	0		0 122	6	4	1	0	133	11	8,3	5	3,8
18:00 - 18:15	0	16	0	0	0	0	16	0	0		0 103	0	3	2	0	108	5	4,6	5	4,6
18:15 - 18:30	0	5	0	0	0	0	5	0	0		0 72	1	1	1	1	76	3	3,9	3	3,9
18:30 - 18:45	0	5	0	0	0	0	5	0	0		0 71	5	1	2	0	79	8	10,1	3	3,8
18:45 - 19:00	0	5	0	0	0	0	5	0	0		0 58	1	1	0	0	60	2	3,3	1	1,7

									Z	ufahrt 1 ·	- Blatt 2									
									K 53	(Lüftelbei	aer Straße	4)								
					4 nooh	<u> </u>														
					1 nach								S	Summe ii	n der Zu	ıfahrt				
		K 5	3 (Lüftelbe	rger Straße)	> L	261 (Med	kenheimer A	llee)												
Zeit																				
von - bis	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	ΣSV	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV .	SV [%]
				St	undenwert	е								Stun	denwerte					
6:00 - 7:00		5	0	4	4		13	3	8		1 76	11	12	12	0	111	35	31,5	24	
6:15 - 7:15	C	8	0	6	3	C	17	9	9		0 87	13	17	12	2	131	42	32,1	31	23,7
6:30 - 7:30 6:45 - 7:45		7	0	5	2	(14	7	7		0 89 0 100	17 34	20 18	12 11	3	141 167	49 63	34,8 37,7	35 33	24,8 19,8
7:00 - 8:00		0	ა 2	4			15	<u> </u>	71 4		0 100		21	11	4		80	36.7	36	16,5
7:15 - 8:15) 5	5	3	2		15	10			0 157	64	24	14	2	261	102	39,1	40	15,3
7:30 - 8:30		5	5	2	3	Č	15	10			0 176		25	15	4	287	107	37,3	44	15,3
7:45 - 8:45	C	5	2	1	5	C	13	8	6		0 179	56	28	25	3	291	109	37,5	56	19,2
8:00 - 9:00	C	7	2	1	6	1	17	9	8		0 170	48	24	28	4	274	100	36,5	56	20,4
8:15 - 9:15	C	9	1	0	5	1	16				0 169		15	24	4	259	86	33,2	43	16,6
8:30 - 9:30 8:45 - 9:45		13	4	1	5	1	24	10			0 169 0 176	46 48	15	26	2	258 260	87 82	33,7 31.5	43 36	16,7 13,8
9:00 - 10:00			4	<u></u>	3						0 176 0 190		11 15	23 18		273	82	30,0	34	13,8 12,5
15:00 - 16:00			1	4 1	4		34		•		0 190		9	13	1	505	61	12,1	23	4,6
15:15 - 16:15		25	1	1	1				2 2		0 449		7	15	1	510	60	11,8	23	4,5
15:30 - 16:30	d		1	1	1	Č	18	3	3 2		0 439		8	10	0	494	55	11,1	18	3,6
15:45 - 16:45	C		0	1	1	(18	2	2		0 496	46	9	11	0	562	66	11,7	20	3,6
16:00 - 17:00	C		0	0	0	(18	(0		0 510	46	9	11	0		66	11,5	20	3,5
16:15 - 17:15	C	22	0	0	0	(22	(0		0 529	43	6	9	0	587	58	9,9	15	2,6
16:30 - 17:30 16:45 - 17:45) 29) 25	0	U	0	(29		0		0 532 0 455		4	10 10	1	579 492	46 36	7,9 7.3	15 15	2,6 3,0
17:00 - 18:00		35	0	0	1				1 1		0 455	22	7	10	1	508	37	7,3	16	3,0
17:15 - 18:15) 44	0	0	1			1	1		0 434		10	8	1	469	34	7,2	19	4,1
17:30 - 18:30	ď		0	0	1	C		1	1		0 382	12	11	6	1	412	29	7,0	18	4,4
17:45 - 18:45	C) 42	0	0	0	C	42	(0		0 368	12	9	6	1	396	27	6,8	16	4,0
18:00 - 19:00	C	31	0	0	0	C	31		0		0 304	7	6	5	1	323	18	5,6	12	3,7
06:00 - 10:00	0	31	10	13	14	1	69	37	28	1	1 570	156	72	69	q	876	297	33,9	150	17,1
	0		10		2	<u>'</u>			20	l 	0 1.727	114	31	37	3		182	9.5	71	
15:00 - 19:00		115	1	1	2	U	119	4	1 3	l	U 1./2/	114	31	37	3	1.912	182	9,5	71	3,7

Stadt Meckenheim - Verkehrsgutachten L 261 / L 158 / K 53 17.03.2010 Standort-Nr. am: Zufahrt 2 - Blatt 1 L 158 (Bonner Straße) von 2 nach 1 von 2 nach 3 L 158 (Bonner Straße) L 158 (Bonner Straße) K 53 (Lüftelberger Straße) L 158 (Gudenauer Allee) Zeit Rad Pkw / Krad Lkw Lz Bus Σ Kfz ΣGV ΣSV Rad Pkw / Krad Lkw Lz Bus Σ Kfz ΣGV ΣSV Lw Lw von - bis 6:00 - 6:15 6:15 - 6:30 6:30 - 6:45 6:45 - 7:00 7:00 - 7:15 7:15 - 7:30 7:30 - 7:45 7:45 - 8:00 8:00 - 8:15 8:15 - 8:30 8:30 - 8:45 8:45 - 9:00 9:00 - 9:15 9:15 - 9:30 9:30 - 9:45 9:45 - 10:00 15:00 - 15:15 15:15 - 15:30 15:30 - 15:45 15:45 - 16:00 16:00 - 16:15 16:15 - 16:30 16:30 - 16:45 16:45 - 17:00 17:00 - 17:15 17:15 - 17:30 17:30 - 17:45 17:45 - 18:00 18:00 - 18:15 18:15 - 18:30 18:30 - 18:45 18:45 - 19:00

Zufahrt 2 - Blatt 1 L 158 (Bonner Straße) von 2 nach 3 von 2 nach 1 K 53 (Lüftelberger Straße) --> L 158 (Gudenauer Allee) L 158 (Bonner Straße) L 158 (Bonner Straße) Zeit Lw Σ Kfz Bus ΣSV Rad Pkw / Krad Lkw Lz Bus ΣGV ΣSV Rad Pkw / Krad Lw Lkw Lz Σ Kfz ΣGV von - bis Stundenwerte Stundenwerte 6:00 - 7:00 6:15 - 7:15 6:30 - 7:30 6:45 - 7:45 7:00 - 8:00 7:30 - 8:30 7:45 - 8:45 8:00 - 9:00 8:15 - 9:15 8:30 - 9:30 8:45 - 9:45 9:00 - 10:00 15:00 - 16:00 15:15 - 16:15 15:30 - 16:30 15:45 - 16:45 16:00 - 17:00 16:15 - 17:15 16:30 - 17:30 16:45 - 17:45 17:00 - 18:00 17:15 - 18:15 17:30 - 18:30 17:45 - 18:45 18:00 - 19:00 1.047 06:00 - 10:00

15:00 - 19:00

1.352

1.419

Standort-Nr.

Zufahrt 2 - Blatt 2 L 158 (Bonner Straße)

von 2 nach 4

L 158 (Bonner Straße) --> L 261 (Meckenheimer Allee)

Summe in der Zufahrt

Zeit von - bis	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	ΣSV	Rad	Pkw / K	rad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
6:00 - 6:15	(93	3	1	1	0	98	5	2			164	4	4	4	. 3	179	12	6,7	11	6, 1
6:15 - 6:30	(140	4	0	1	0	145	5	1		0 ′	194	5	6	2	. 2	2 209	13	6,2	10	4,8
6:30 - 6:45	(216	7	2	1	0	226	10	3		0 3	326	10	2	4	. 3	345	16	4,6	9	2,6
6:45 - 7:00	(131	5	0	0	0	136	5	0			225	11	2	4	. 6	248	17	6,9	12	4,8
7:00 - 7:15	() 191	12	0	0	0	203	12	0			299	22	1	3	2	2 327	26	8,0	6	1,8
7:15 - 7:30	(169	7	1	0	0	177	8	1		0 2	265	15	4	7	2	2 293	26	8,9	13	4,4
7:30 - 7:45	(141	5	4	0	0	150	9	4		0 2	247	19	6	1		273	26	9,5	7	2,6
7:45 - 8:00	(134	7	2	1	0	144	10	3		0 2	244	16	4	3		269	23	8,6	9	3,3
8:00 - 8:15	(141	11	3	1	1	157	15	5		0 2	261	26	7	3	1	1 298	36	12,1	11	3,7
8:15 - 8:30	(109	6	0	1	0	116	7	1		0 2	206	21	6		. (237	31	13,1	10	4,2
8:30 - 8:45	(109	2	3	0	0	114	5	3			212	7	5	6	i l 2	2 232	18	7,8	13	5,6
8:45 - 9:00	(125	4	3	3	0	135	10	6		0 2	237	16	7	ç		269	32	11,9	16	5,9
9:00 - 9:15	(87	1	1	0	0	89	2	1			176	13	6	8	1	204	27	13,2	15	7,4
9:15 - 9:30	(91	3	1	0	0	95	4	1		0 ′	188	23	6	3	(220	32	14,5	9	4,1
9:30 - 9:45	(106	3	2	0	0	111	5	2		0 ′	192	14	6		2	2 223	29	13,0	17	7,6
9:45 - 10:00	(102	3	2	0	0	107	5	2		0 2	202	14	6	6	i (228	26	11,4	12	5,3
15:00 - 15:15	(83	1	1	0	0	85	2	1		0 ′	173	7	5	2	! (187	14	7,5	7	3,7
15:15 - 15:30	(84	9	3	1	1	98	13	5			186	23	4	4	1	218	31	14,2	9	4,1
15:30 - 15:45	(77	9	5	4	0	95	18	9		0: ′	184	20	11	8	(223	39	17,5	19	8,5
15:45 - 16:00	(77	6	1	0	2	2 86	7	3			203	17	5	1	2	2 228	23	10,1	8	3,5
16:00 - 16:15	(85	3	2	2	1	93	7	5			201	18	2	3	1	1 225	23	10,2	6	2,7
16:15 - 16:30	(91	8	0	0	0	99	8	0		0 ′	190	19	0	1	1	211	20	9,5	2	0,9
16:30 - 16:45	(69	5	1	1	0	76	7	2		0 1	175	13	3	6		1 198	22	11,1	10	5, 1
16:45 - 17:00	(100	3	2	1	0	106	6	3			237	12	3	2	. (254	17	6,7	5	2,0
17:00 - 17:15	(92	4	0	0	0	96	4	0		0 2	208	11	3	2	. (224	16	7,1	5	2,2
17:15 - 17:30	(97	3	2	0	0	102	5	2		0 2	237	7	3	1	1	1 249	11	4,4	5	2,0
17:30 - 17:45	(129	5	0	0	0	134	5	0		0 2	270	15	0	3	1	1 289	18	6,2	4	1,4
17:45 - 18:00	(92	1	1	1	0	95	3	2			199	7	3	4	. (213	14	6,6	7	3,3
18:00 - 18:15	(102	3	1	0	0	106	4	1		0 2	218	9	2	C) (229	11	4,8	2	0,9
18:15 - 18:30	(81	1	1	2	0	85	4	3		0 ′	186	5	5	2	. (198	12	6,1	7	3,5
18:30 - 18:45	(77	2	1	1	0	81	4	2		0 2	202	3	2	1	1	1 209	6	2,9	4	1,9
18:45 - 19:00	(86	1	0	0	0	87	1	0			176	6	1	1	(184	8	4,3	2	1,1

Zufahrt 2 - Blatt 2 L 158 (Bonner Straße) von 2 nach 4 Summe in der Zufahrt --> L 261 (Meckenheimer Allee) L 158 (Bonner Straße) Zeit Bus GV [%] SV [%] Rad Pkw / Krad Lw Lkw Lz Bus Σ Kfz ΣGV ΣSV Rad Pkw / Krad Lw Lkw Lz Σ Kfz ΣGV ΣSV von - bis Stundenwerte Stundenwerte 6:00 - 7:00 5,9 4,3 3,3 1.129 6,4 6:15 - 7:15 1.044 6:30 - 7:30 1.115 1.213 3,3 6:45 - 7:45 1.036 1.141 8.3 3,3 Ω 7:00 - 8:00 1.055 1.162 3,0 8,7 1.017 1.133 3,5 7:30 - 8:30 3,4 4,2 1.077 10,8 7:45 - 8:45 1.036 4,8 8:00 - 9:00 1.036 11,3 8:15 - 9:15 11.5 5,7 8:30 - 9:30 5,7 6.2 13.1 8:45 - 9:45 9:00 - 10:00 13,0 6,1 15:00 - 16:00 5,0 12,5 15:15 - 16:15 13,0 4,7 15:30 - 16:30 11,8 3,9 15:45 - 16:45 10,2 16:00 - 17:00 9,2 2,6 8,5 16:15 - 17:15 16:30 - 17:30 2,7 16:45 - 17:45 1.016 1.9 6.1 17:00 - 18:00 2,2 6,1 17:15 - 18:15 17:30 - 18:30 5,9 2,2 Ω 2,4 17:45 - 18:45 5,1 18:00 - 19:00 1,8 4,5 4.054 06:00 - 10:00 2.085 2.203 3.638 4,4 9,6

3.245

3.539

8,1

2,9

15:00 - 19:00

1.422

1.524

17.03.2010 Standort-Nr. Stadt Meckenheim - Verkehrsgutachten L 261 / L 158 / K 53 am: Zufahrt 3 - Blatt 1 L 158 (Gudenauer Allee) von 3 nach 1 von 3 nach 2 L 158 (Gudenauer Allee) K 53 (Lüftelberger Straße) L 158 (Gudenauer Allee) L 158 (Bonner Straße) Zeit Σ Kfz ΣGV ΣSV Lw Σ Kfz ΣSV Rad Pkw / Krad Lkw Lz Bus Rad Pkw / Krad Lkw Lz Bus ΣGV Lw von - bis 6:00 - 6:15 6:15 - 6:30 6:30 - 6:45 6:45 - 7:00 7:00 - 7:15 7:15 - 7:30 7:30 - 7:45 7:45 - 8:00 8:00 - 8:15 8:15 - 8:30 8:30 - 8:45 8:45 - 9:00 9:00 - 9:15 9:15 - 9:30 9:30 - 9:45 9:45 - 10:00 15:00 - 15:15 15:15 - 15:30 15:30 - 15:45 15:45 - 16:00 16:00 - 16:15 16:15 - 16:30 16:30 - 16:45 16:45 - 17:00 17:00 - 17:15 17:15 - 17:30 17:30 - 17:45 17:45 - 18:00 18:00 - 18:15 18:15 - 18:30 18:30 - 18:45 18:45 - 19:00

Zufahrt 3 - Blatt 1 L 158 (Gudenauer Allee) von 3 nach 2 von 3 nach 1 L 158 (Gudenauer Allee) --> K 53 (Lüftelberger Straße) L 158 (Gudenauer Allee) --> L 158 (Bonner Straße) Zeit Rad Pkw / Krad Lkw Lz Bus Σ Kfz ΣGV ΣSV Pkw / Krad Lkw Lz Bus Σ Kfz ΣGV ΣSV Lw Rad Lw von - bis Stundenwerte Stundenwerte 6:00 - 7:00 6:15 - 7:15 6:30 - 7:30 6:45 - 7:45 7:00 - 8:00 7:15 - 8:15 7:30 - 8:30 7:45 - 8:45 8:00 - 9:00 8:15 - 9:15 8:30 - 9:30 8:45 - 9:45 9:00 - 10:00 15:00 - 16:00 15:15 - 16:15 15:30 - 16:30 15:45 - 16:45 16:00 - 17:00 16:15 - 17:15 108 334 24 16:30 - 17:30 16:45 - 17:45 17:00 - 18:00 17:15 - 18:15 17:30 - 18:30 17:45 - 18:45 18:00 - 19:00 06:00 - 10:00

15:00 - 19:00

1.132

1.231

Standort-Nr.

Zufahrt **3** - Blatt 2 L **158** (Gudenauer Allee)

von 3 nach 4

L 158 (Gudenauer Allee) --> L 261 (Meckenheimer Allee)

Summe in der Zufahrt

			,			,														
Zeit von - bis	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	ΣSV	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
6:00 - 6:15	0	31	1	0	0	0	32	1	0		0 67	3	1	0	0	71	4	5,6	1	1,4
6:15 - 6:30	0	37	4	0	0	0	41	4	0		0 75	7	1	0	0	83	8	9,6	1	1,2
6:30 - 6:45	0	42	2	1	0	0	45	3	1		0 94	7	4	1	0	106	12	11,3	5	4,7
6:45 - 7:00	0	44	1	0	1	0	46	2	1		0 110	2	3	1	0	116	6	5,2	4	3,4
7:00 - 7:15	0	61	3	0	0	0	64	3	0		0 124	6	1	1		132	8	6,1	2	1,5
7:15 - 7:30	0	54	3	0	0	0	57	3	0		0 148	8	0	3		160	11	6,9	4	2,5
7:30 - 7:45	0	62	3	0	1	0	66	4	1		0 187	11	2	4	1	205	17	8,3	7	3,4
7:45 - 8:00	0	40	1	0	0	0	41	1	0		0 142	7	2	1	1	153	10	6,5	4	2,6
8:00 - 8:15	0	40	2	1	0	0	43	3	1		0 123	6	5	4	1	139	15	10,8	10	7,2
8:15 - 8:30	0	34	2	1	0	0	37	3	1		0 108	6	7	1	4	126	14	11,1	12	9,5
8:30 - 8:45	0	41	1	2	0	1	45	3	3		0 119	11	5	3		139	19	13,7	9	6,5
8:45 - 9:00	0	17	0	0	1	0	18	1	1		0 95	6	3	7	1	112	16	14,3	11	9,8
9:00 - 9:15	0	31	0	1	0	0	32	1	1		0 114	9	7	1	0	131	17	13,0	8	6,1
9:15 - 9:30	0	19	0	0	0	0	19	0	0		0 63	5	1	0		70	6	8,6	2	2,9
9:30 - 9:45	0	26	2	0	1	0	29	3	1		0 119	8	1	2	0	130	11	8,5	3	2,3
9:45 - 10:00	0	24	2	2	0	0	28	4	2		0 112	9	3	2	0	126	14	11,1	5	4,0
15:00 - 15:15	0	17	1	0	0	0	18	1	0		0 122	8	3	2	0	135	13	9,6	5	3,7
15:15 - 15:30	0	10	1	0	0	0	11	1	0		0 100	16	1	0	1	118	17	14,4	2	1,7
15:30 - 15:45	0	16	1	0	0	0	17	1	0		0 106	9	2	1	0	118	12	10,2	3	2,5
15:45 - 16:00	0	10	1	0	0	0	11	1	0		0 118	12	3	2	0	135	17	12,6	5	3,7
16:00 - 16:15	0	13	1	0	0	0	14	1	0		0 81	6	3	1	0	91	10	11,0	4	4,4
16:15 - 16:30	0	11	0	0	0	0	11	0	0		0 105	7	1	0		114	8	7,0	2	1,8
16:30 - 16:45	0	14	2	0	0	0	16	2	0		0 127	10	5	2	1	145	17	11,7	8	5,5
16:45 - 17:00	0	15	0	0	0	0		0	0		0 111	4	0	0	0	115	4	3,5	0	0,0
17:00 - 17:15	0	16	1	0	0	0	17	1	0		0 118	10	2	1	1	132	13	9,8	4	3,0
17:15 - 17:30	0		0	0	0	0		0	0		0 121	7	1	1	2	132	9	6,8	4	3,0
17:30 - 17:45	0	22	0	1	0	0	23	1	1		0 124	8	1	0		133	9	6,8	1	0,8
17:45 - 18:00	0	16	1	0	1	0	.0	2	1		0 107	4	0	2	2	115	6	5,2	4	3,5
18:00 - 18:15	0	14	1	0	0	0	15	1	0		0 112	4	1	0		117	5	4,3	1	0,9
18:15 - 18:30	0	14	1	0	0	0	15	1	0		0 115	5	0	0	0	120	5	4,2	0	0,0
18:30 - 18:45	0	17	0	0	0	0	17	0	0		0 98	4	0	0	0	102	4	3,9	0	0,0
18:45 - 19:00	0	10	0	0	0	0	10	0	0		0 82	2	0	2	0	86	4	4,7	2	2,3

Zufahrt 3 - Blatt 2 L 158 (Gudenauer Allee) von 3 nach 4 Summe in der Zufahrt --> L 261 (Meckenheimer Allee) L 158 (Gudenauer Allee) Zeit Rad Pkw / Krad Lkw Lz Bus Σ Kfz ΣGV ΣSV Pkw / Krad Lkw Lz Bus Σ Kfz GV [%] SV [%] Lw Rad Lw ΣGV ΣSV von - bis Stundenwerte Stundenwerte 6:00 - 7:00 2,9 6:15 - 7:15 7,8 2,7 6:30 - 7:30 6:45 - 7:45 6.9 2.8 7:00 - 8:00 7.1 2,6 7:15 - 8:15 5,3 7:30 - 8:30 9.0 7:45 - 8:45 10,4 6,3 8:00 - 9:00 12,4 8,1 8:15 - 9:15 13,0 7,9 8:30 - 9:30 12,8 6,6 8:45 - 9:45 11.3 5,4 9:00 - 10:00 10.5 3,9 15:00 - 16:00 3,0 11,7 15:15 - 16:15 12,1 3,0 15:30 - 16:30 3,1 10,3 15:45 - 16:45 10,7 16:00 - 17:00 8,4 3,0 16:15 - 17:15 8.3 2,8 512 16:30 - 17:30 8,2 6.8 3,1 16:45 - 17:45 17:00 - 18:00 2,5 7,2 17:15 - 18:15 17:30 - 18:30 5,2 1,2 17:45 - 18:45 4,4 0,7 18:00 - 19:00 4,2 06:00 - 10:00 1.800 1.999 9,4 4,4 15:00 - 19:00 2,4 1.747 1.908 8,0

17.03.2010 Standort-Nr. Stadt Meckenheim - Verkehrsgutachten L 261 / L 158 / K 53 am: Zufahrt 4 - Blatt 1 L 261 (Meckenheimer Allee) von 4 nach 2 von 4 nach 1 L 261 (Meckenheimer Allee) K 53 (Lüftelberger Straße) L 261 (Meckenheimer Allee) L 158 (Bonner Straße) Zeit Rad Pkw / Krad Lw Lkw Lz Bus Σ Kfz ΣGV ΣSV Rad Pkw / Krad Lw Lkw Lz Bus Σ Kfz ΣGV ΣSV von - bis 6:00 - 6:15 6:15 - 6:30 6:30 - 6:45 6:45 - 7:00 7:00 - 7:15 7:15 - 7:30 7:30 - 7:45 7:45 - 8:00 8:00 - 8:15 8:15 - 8:30 8:30 - 8:45 8:45 - 9:00 9:00 - 9:15 9:15 - 9:30 9:30 - 9:45 9:45 - 10:00 15:00 - 15:15 15:15 - 15:30 15:30 - 15:45 15:45 - 16:00 16:00 - 16:15 16:15 - 16:30 16:30 - 16:45 16:45 - 17:00 17:00 - 17:15 17:15 - 17:30 17:30 - 17:45 17:45 - 18:00 18:00 - 18:15 18:15 - 18:30 18:30 - 18:45

18:45 - 19:00

Zufahrt 4 - Blatt 1 L 261 (Meckenheimer Allee) von 4 nach 1 von 4 nach 2 L 261 (Meckenheimer Allee) --> K 53 (Lüftelberger Straße) --> L 158 (Bonner Straße) L 261 (Meckenheimer Allee) Zeit Rad Pkw / Krad Lw Lkw Lz Bus Σ Kfz ΣGV ΣSV Rad Pkw / Krad Lw Lkw Lz Bus Σ Kfz ΣGV ΣSV von - bis Stundenwerte Stundenwerte 6:00 - 7:00 6:15 - 7:15 6:30 - 7:30 6:45 - 7:45 7:00 - 8:00 7:15 - 8:15 7:30 - 8:30 7:45 - 8:45 8:00 - 9:00 8:15 - 9:15 8:30 - 9:30 8:45 - 9:45 9:00 - 10:00 15:00 - 16:00 15:15 - 16:15 15:30 - 16:30 15:45 - 16:45 16:00 - 17:00 16:15 - 17:15 16:30 - 17:30 16:45 - 17:45 17:00 - 18:00 17:15 - 18:15 17:30 - 18:30 17:45 - 18:45 18:00 - 19:00

1.035

2.158

1.165

2.303

06:00 - 10:00

15:00 - 19:00

Standort-Nr.

Zufahrt 4 - Blatt 2 L 261 (Meckenheimer Allee)

von 4 nach 3

L 261 (Meckenheimer Allee) --> L 158 (Gudenauer Allee)

Summe in der Zufahrt

Zeit von - bis	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	ΣSV	Rad	Pkw / Krad	Lw	Lkw	Lz	Bus	Σ Kfz	ΣGV	GV [%]	ΣSV	SV [%]
6:00 - 6:15	C	5	0	0	0	0	5	0	0		1 42	1	0	1	0	44	2	4,5	1	2,3
6:15 - 6:30	C	4	0	0	0	0	4	0	0		0 40	2	3	1	0	46	6	13,0	4	8,7
6:30 - 6:45	C	3	2	0	0	0	5	2	0		0 38	6	2	0	0	46	8	17,4	2	4,3
6:45 - 7:00	C	3	1	0	0	0	4	1	0		0 61	5	1	5	0	72	11	15,3	6	8,3
7:00 - 7:15	C	10	2	0	0	0	12	2	0		0 88	8	1	0	0	97	9	9,3	1	1,0
7:15 - 7:30	C	13	0	2	0	0	15	2	2		0 126	13	5	0	0	144	18	12,5	5	3,5
7:30 - 7:45	C	13	0	0	0	0	13	0	0		0 119	8	1	2	1	131	11	8,4	4	3,1
7:45 - 8:00	C	11	0	0	0	0	11	0	0		0 96	6	4	5	2	113	15	13,3	11	9,7
8:00 - 8:15	C	19	0	2	0	0	21	2	2		0 111	2	6	3	0	122	11	9,0	9	7,4
8:15 - 8:30	C	15	0	0	0	0	15	0	0		0 102	3	8	8	1	122	19	15,6	17	13,9
8:30 - 8:45	C	13	0	2	0	0	15	2	2		0 101	7	5	5	0	118	17	14,4	10	8,5
8:45 - 9:00	C	9	1	1	0	0	11	2	1		0 79	7	1	5	0	92	13	14,1	6	6,5
9:00 - 9:15	C	8	0	0	0	0	8	0	0		0 86	9		7	2	106	18	17,0	11	10,4
9:15 - 9:30	C	11	0	0	0	0	11	0	0		0 69	9	1	8	0	87	18	20,7	9	10,3
9:30 - 9:45	C	9	0	2	0	0	11	2	2		0 70		5	2	0	83	13	15,7	7	8,4
9:45 - 10:00	C	17	2	1	0	0	20	3	1		0 92	9	6	7	0	114	22	19,3	13	11,4
15:00 - 15:15	C		0	0	0	0		0	0		0 118	9	4	0	0	131	13	9,9	4	3,1
15:15 - 15:30	C	0.	0	3	0	0	<u> </u>	3	3		0 158	5	6	3	0	172	14	8,1	9	5,2
15:30 - 15:45	C	30	0	0	0	0	- 00	0	0		0 167	12	4	1	0	184	17	9,2	5	2,7
15:45 - 16:00	C	33	1	0	0	0		1	0		0 167	10	2	0	1	180	12	6,7	3	1,7
16:00 - 16:15	C		1	0	0	0		1	0			13	4	3	1	215	20	9,3	8	3,7
16:15 - 16:30	C	31	2	1	0	0	<u> </u>	3	1		0 182	6	2	1	0	191	9	4,7	3	1,6
16:30 - 16:45	C	20	1	0	0	0		1	0		0 150	13	2	2	0	167	17	10,2	4	2,4
16:45 - 17:00	C	17	0	0	0	0		0	0		0 191	8	1	2	1	203	11	5,4	4	2,0
17:00 - 17:15	C		2	0	0	0		2	0		1 180	7		0	0	190	10	5,3	3	1,6
17:15 - 17:30	C	23	1	0	0	0	24	1	0		0 166	9	1	1	0	177	11	6,2	2	1,1
17:30 - 17:45	C	27	3	0	0	0	- 00	3	0		0 184	12	0	1	0	197	13	6,6	1	0,5
17:45 - 18:00	C	24	3	0	0	0	=-	3	0		0 180	7	1	0	0	188	8	4,3	1	0,5
18:00 - 18:15	C		1	0	0	0		1	0		0 150		1	1	0	160	10	6,3	2	1,3
18:15 - 18:30	C	23	1	0	0	0	24	1	0			5	0	1	0	194	6	3,1	1	0,5
18:30 - 18:45	C	27	2	0	0	0	29	2	0		0 148	8	0	0	0	156	8	5,1	0	0,0
18:45 - 19:00	C	26	0	0	0	0	26	0	0		0 160	3	1	0	0	164	4	2,4	1	0,6

Zufahrt 4 - Blatt 2 L 261 (Meckenheimer Allee) von 4 nach 3 Summe in der Zufahrt --> L 158 (Gudenauer Allee) L 261 (Meckenheimer Allee) Zeit SV [%] Rad Pkw / Krad Lw Lkw Lz Bus Σ Kfz ΣGV ΣSV Rad Pkw / Krad Lw Lkw Lz Bus Σ Kfz ΣGV GV [%] ΣSV von - bis Stundenwerte Stundenwerte 6:00 - 7:00 13,0 13,0 5,0 6:15 - 7:15 3,9 6:30 - 7:30 12,8 6:45 - 7:45 11.0 3.6 7:00 - 8:00 10,9 4,3 7:15 - 8:15 10,8 5,7 7:30 - 8:30 11.5 8.4 7:45 - 8:45 13,1 9,9 9,3 8:00 - 9:00 13,2 8:15 - 9:15 15,3 10,0 8:30 - 9:30 16,4 8,9 8:45 - 9:45 16.8 9.0 9:00 - 10:00 18,2 10,3 15:00 - 16:00 8,4 3,1 15:15 - 16:15 8,4 3,3 2,5 15:30 - 16:30 Ω Ω 15:45 - 16:45 7,7 2,4 **2,4** 7,3 16:00 - 17:00 6,3 1,9 16:15 - 17:15 16:30 - 17:30 6,6 1,8 1,3 16:45 - 17:45 5.9 17:00 - 18:00 5.6 0,9 17:15 - 18:15 17:30 - 18:30 Ω Ω 5.0 0,7 17:45 - 18:45 4,6 0,6 18:00 - 19:00 4,2 0,6

06:00 - 10:00

15:00 - 19:00

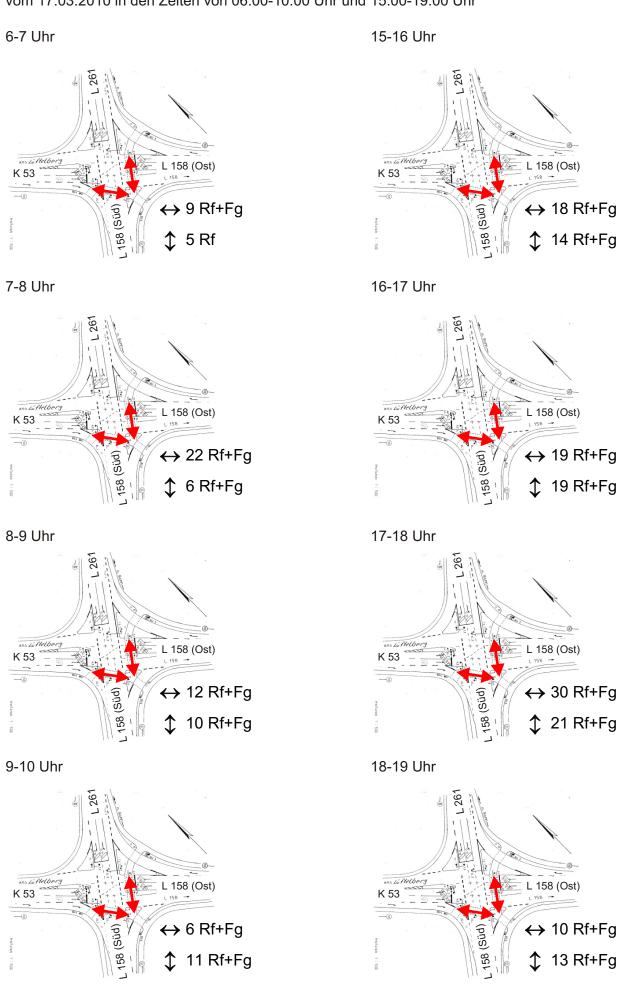
1.320

2.683

1.537

2.869

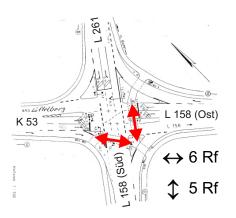
13,7

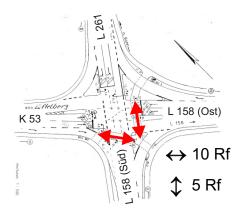

6,4

7,5

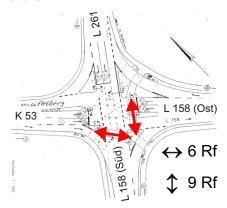
1,8

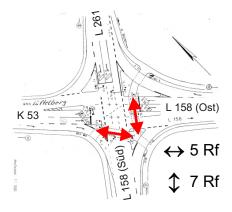
Stadt Meckenheim - Verkehrsgutachten L 261 / L 158 / K 53

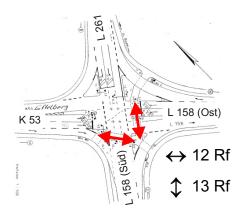

Auswertung der Verkehrszählung von den die Furten querenden Fußgängern und Radfahrern vom 17.03.2010 in den Zeiten von 06.00-10.00 Uhr und 15.00-19.00 Uhr

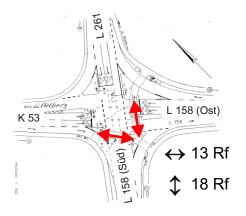

11 Rf+Fg

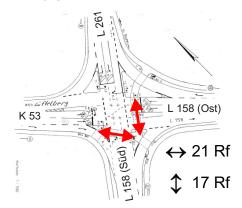
13 Rf+Fg

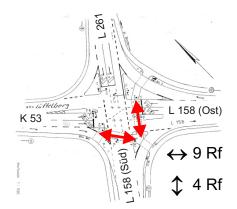

6-7 Uhr


7-8 Uhr

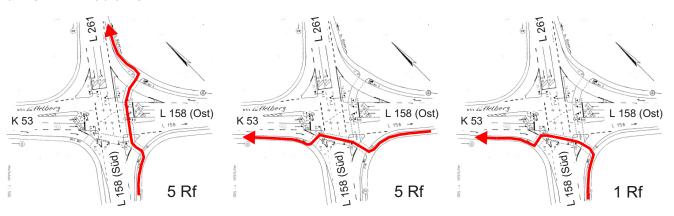

8-9 Uhr

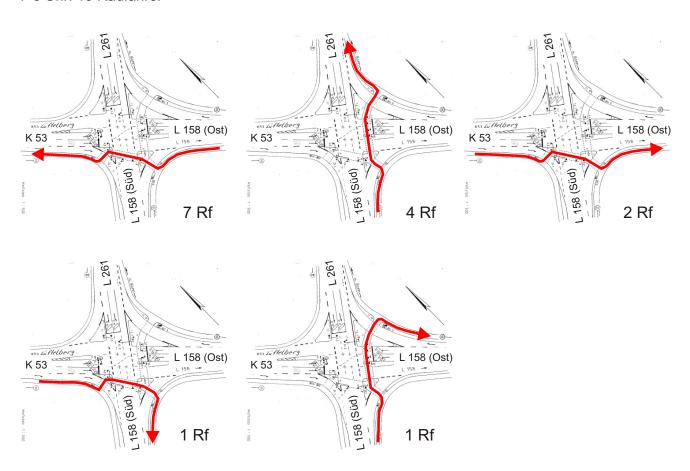

9-10 Uhr


15-16 Uhr

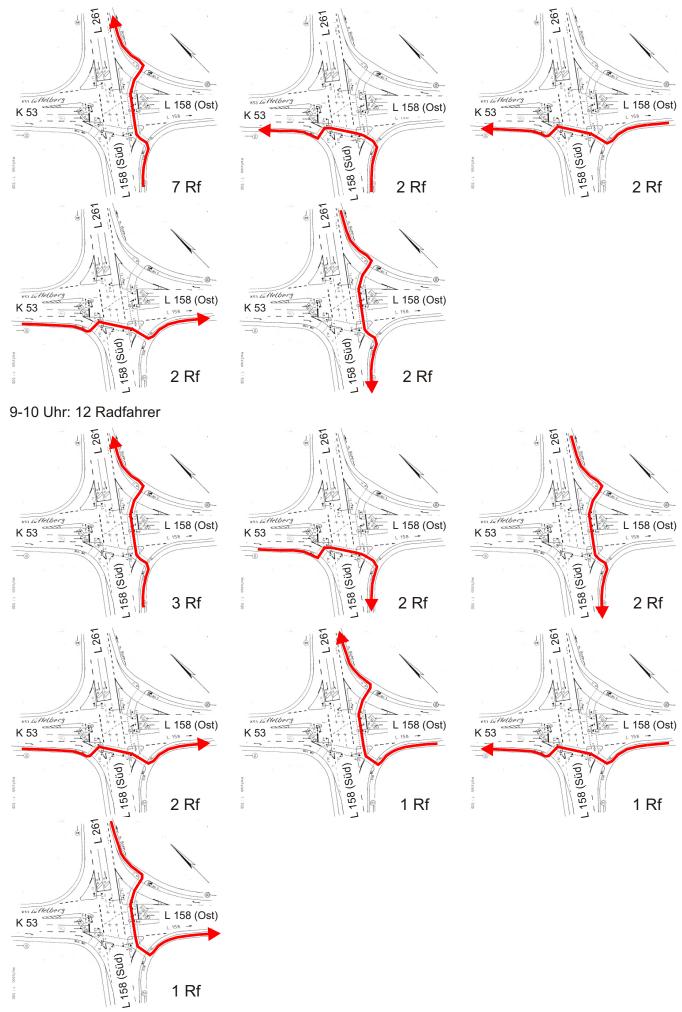

16-17 Uhr

17-18 Uhr


18-19 Uhr

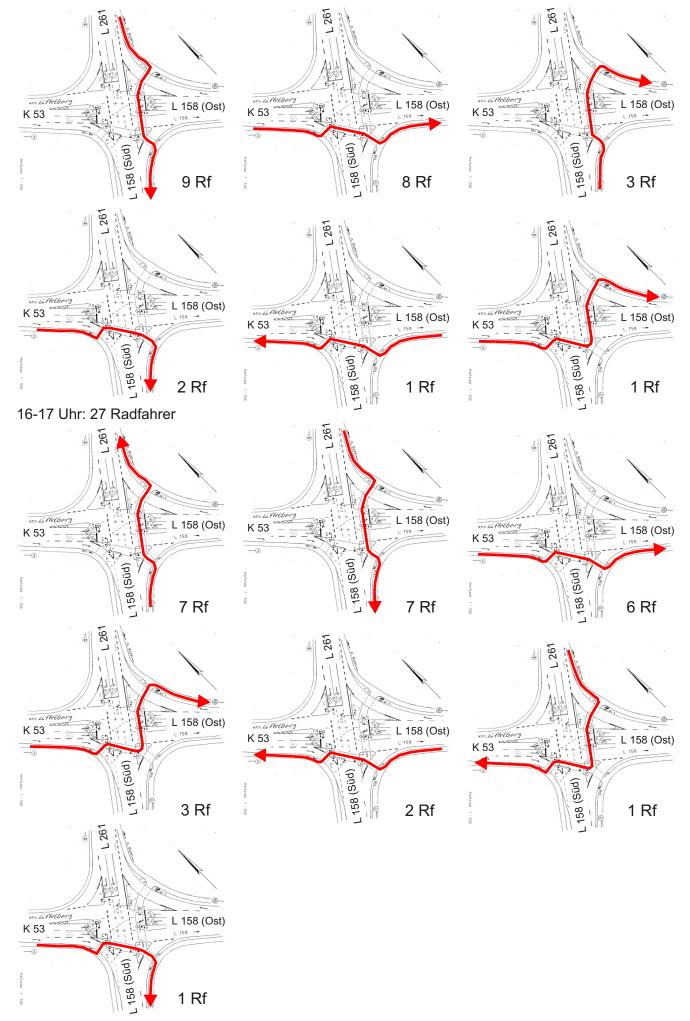


6-7 Uhr: 11 Radfahrer



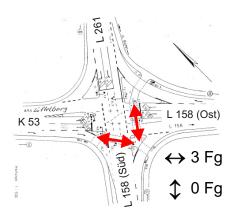
7-8 Uhr: 15 Radfahrer

8-9 Uhr: 15 Radfahrer

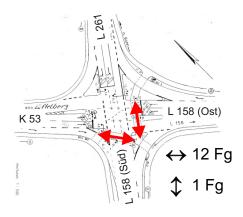


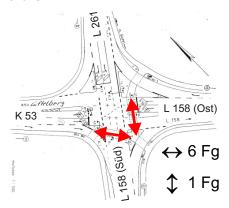
1Rf

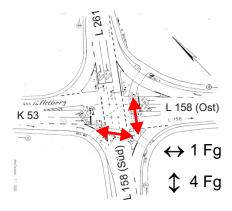
15-16 Uhr: 24 Radfahrer

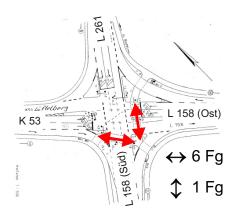


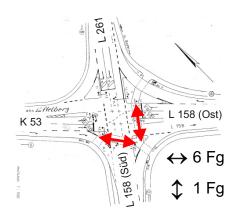
17-18 Uhr: 34 Radfahrer

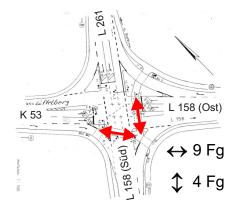


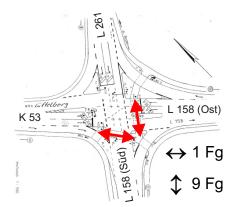

6-7 Uhr


7-8 Uhr

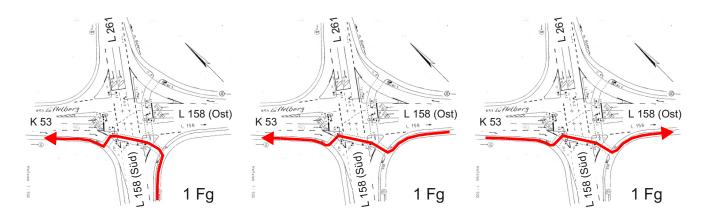

8-9 Uhr

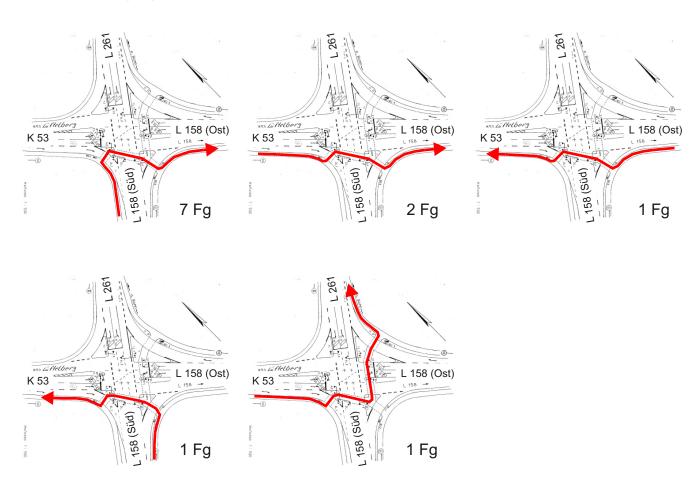

9-10 Uhr


15-16 Uhr


16-17 Uhr

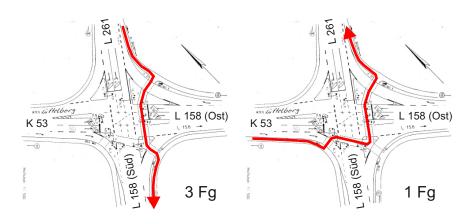
17-18 Uhr

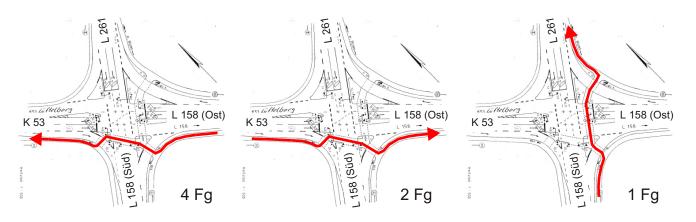

18-19 Uhr



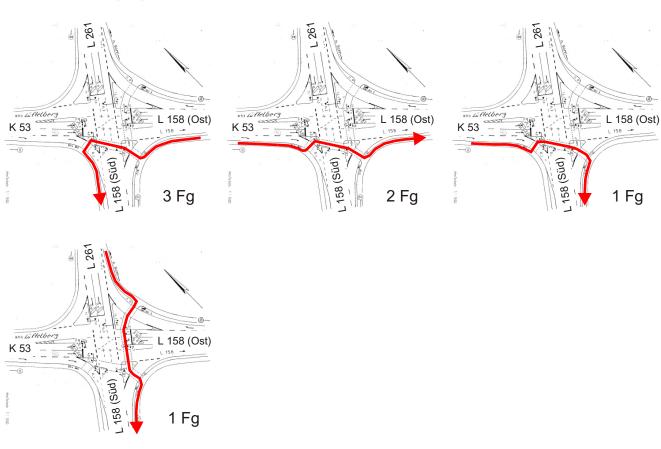
6-7 Uhr: 3 Fußgänger

7-8 Uhr: 12 Fußgänger


8-9 Uhr: 6 Fußgänger

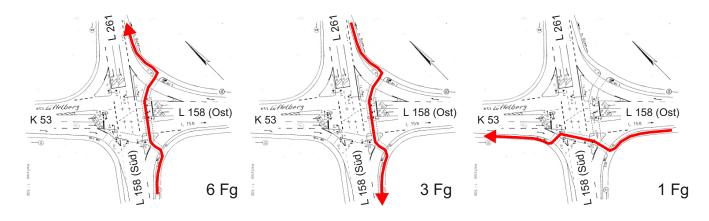


9-10 Uhr: 4 Fußgänger



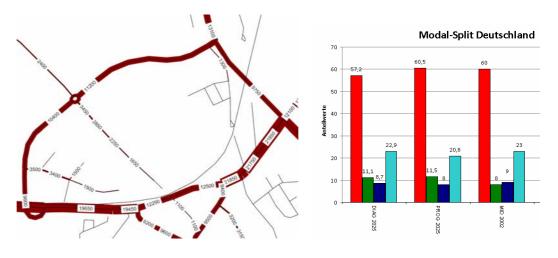
15-16 Uhr: 7 Fußgänger

16-17 Uhr: 7 Fußgänger



17-18 Uhr: 13 Fußgänger

18-19 Uhr: 10 Fußgänger



Stadt Meckenheim

Bebauungsplan Nr. 118 "Bahnhof-Nördliche Stadterweiterung I" und Bebauungsplan Nr. 119 "Verbindung Rheinbacher Straße/L 158-Am Wiesenpfad/ K53"

Verkehrsprognose 2025

Kurzbericht

Dezember 2010

1 Aufgabenstellung

Bereits im Zuge des Verkehrsentwicklungskonzepts für die Stadt Meckenheim (Bericht, November 2004) hat die AB Stadtverkehr GbR die Stadtverwaltung Meckenheim hinsichtlich der verkehrlichen Belange und Auswirkungen der Bebauungspläne 118 / 119 "Nördliche Stadterweiterung" beraten. Als Hilfsmittel für die Beantwortung verkehrlicher und städtebaulicher Fragestellungen wurde im Rahmen des Verkehrsentwicklungskonzepts ein Berechnungsmodell für den Kfz-Verkehr für die Stadt Meckenheim erstellt. Mit dem Modell wurden die Verkehrsverflechtungen und daraus abgeleitet zukünftige Kfz-Verkehrsbelastungen ermittelt und dargestellt. Als Prognosehorizont wurde im Berechnungsmodell das Jahr 2015 angelegt.

Nach 2004 wurden die Planungen für die "Nördliche Stadterweiterung" in mehreren Stufen angepasst. Gleichzeitig haben sich die Prognosen für die allgemeine Entwicklung der strukturellen und verkehrlichen Einflussgrößen in Deutschland und Meckenheim geändert. Diesen veränderten Bedingungen soll nun Rechnung getragen werden, indem die verkehrlichen Auswirkungen der "Nördlichen Stadterweiterung" für das **Prognosejahr 2025** ermittelt und dargestellt werden.

2 Nördliche Stadterweiterung - Prognose Kfz-Verkehrsbelastungen 2025

Die Anpassung des Verkehrsberechnungsmodells auf den Prognosehorizont 2025 erfolgt auf Grundlage der "Prognose der deutschlandweiten Verkehrsverflechtungen 2025" des Bundesministeriums für Verkehr, Bau und Stadtentwicklung sowie unter detaillierter Berücksichtigung regionaler und lokaler Einflussfaktoren bzw. Prognosen. Die berücksichtigten **Quellen und Schlussfolgerungen** sind detailliert in **Anlage 1** aufgeschlüsselt.

Im Ergebnis werden im Verkehrsberechnungsmodell zugrunde gelegt:

Pkw-Verkehr Stadt Meckenheim: Verkehrsaufkommen 2004 bis 2025:

→ Binnenverkehr: -12%→ Quell- / Zielverkehr: - 8%

→ Durchgangsverkehr (ohne BAB): +5%

Schwerverkehr Stadt Meckenheim: Verkehrsaufkommen 2004 bis 2025:

→ Binnenverkehr: +/- 0%→ Quell- / Zielverkehr: +5%

→ Durchgangsverkehr (ohne BAB): +10%

Für die geplante Querspange (B-Plan Nr. 119; Verbindung Rheinbacher Straße/ L 158-Am Wiesenpfad/ K53) ergibt sich für den Prognosehorizont 2025 eine Kfz-Verkehrsbelastung von **9.600 bis 11.200 Fahrzeugen** bei einem Schwerverkehrsanteil von 6%. Die Verkehrsbelastungen, die sich für den Prognosehorizont 2025 im Umfeld der nördlichen Stadterweiterung ergeben, sind im Detail **Anlage 2** zu entnehmen.

Anlage 1

Verkehrsprognose 2025:

Allgemeine Verkehrsentwicklung: Strukturelle und verkehrliche Einflussgrößen

Thomas-Mann-Straße 29 • 53111 Bonn

Fon: +49 - 228 - 390 50 90 Fax: +49 - 228 - 390 50 91 EMail: bonn@ab-stadtverkehr.de

Verkehrsprognose 2025 - Anlage 1

Auftraggeber: Stadt Meckenheim, Stadtplanungsamt

Projekt: B-Plan 118 / 119 - Nördliche Stadterweiterung

Thema: Anpassung des Netzmodells auf den Prognosehorizont 2025

verwendete Quellen

Quelle 1: Bundesministerium für Verkehr, Bau und Stadtentwicklung (Hrsg.), Prognose der deutschlandweiten Verkehrsverflechtungen 2025, München/Freiburg 2007

Quelle 2: BBR (Hrsg.), Raumordnungsprognose 2020/50, BBR-Berichte, Band 23, Bonn 2006 (kein direkter Zugriff; vielfach zitiert in Quelle 1 und Quelle 4)

Quelle 3: infas Institut für angewandte Sozialwissenschaft GmbH, Mobilität in Deutschland 2008 - Alltagsverkehr in Bonn und dem Rhein-Sieg-Kreis, Ergebnispräsentation am 23. November 2009

Quelle 4: Rhein-Sieg-Kreis (Hrsg.), Kreisentwicklungskonzept 2020 – Vielfalt und Vitalität, Entwurf, Siegburg, November 2009

Quelle 5: Landesbetrieb Information und Technik Nordrhein-Westfalen (IT.NRW), Bevölkerungsmodellrechnung 2008 bis 2030, Düsseldorf, Stand: 22.11.2010

Quelle 6: Bundesministerium für Verkehr Bau und Wohnungswesen, Bundesverkehrswegeplan 2003, Berlin 2003

Quelle 7: IHK Rheinland (Hrsg.), Regionale Auswertung der Verkehrsprognose 2025 – Präsentation durch Gutachterbüro IVV, Präsentation vom 18.11.2009

Zusammenfassung der Anpassungen des Netzmodells / Prognosehorizont 2025

Verkehrsnachfrage Personenverkehr

Alle regionalen Prognosen gehen von einer sinkenden Einwohnerzahl für Meckenheim bis 2025 aus. Das Entwicklungsvorhaben "Nördliche Stadterweiterung" ist ein Beitrag, diesem prognostizierten Trend entgegenzuwirken. Dennoch ist für Meckenheim eher von einer rückläufigen Einwohnerentwicklung auszugehen. Darüber hinaus deuten die Entwicklungen der letzten Jahre darauf hin, dass die in der Verkehrsprognose des Bundesverkehrsministeriums getroffenen Annahmen einer weiterhin starken Verlagerung zum Verkehrsträger "Personenkraftwagen" nicht haltbar sind. Insbesondere haben die Ergebnisse der MiD 2002 und 2008 gezeigt, dass gerade bei der rasant wachsenden Gruppe der über 65-jährigen der Anteil von ÖV, Fahrrad und insbesondere des Fußverkehrs deutlich über dem Durchschnitt aller Altersgruppen liegt. Durch die Entwicklungsmaßnahme "Nördliche Stadterweiterung" wird Flächennachfrage in fußläufiger Entfernung des Bahnhofs und des Stadtzentrum gebündelt. Hier wird entsprechend die Verkehrsnachfrage auch tendenziell eher auf ÖV, Fahrrad und Fußverkehr ausgerichtet. In den übrigen Stadtbereichen von Meckenheim ist daher von einem Rückgang der Wohnraumnachfrage und somit auch des Verkehrsauf-

kommens zu rechnen.

Die Entwicklung des Verkehrsaufkommens (Personenfahrten) und der Verkehrsleistung wird daher tendenziell asymmetrisch verlaufen. Bei weiterhin steigender Verkehrsleistung und Zunahme der durchschnittlichen Wegelängen wird das Netz der Hauptverkehrsstraßen bis 2025 weitere, leichte Zunahmen verzeichnen. Bei den Quell-/ Zielwegen wird die Ausrichtung auf das regionale Zentrum Bonn unverändert stark bleiben und weiterhin in der Regel mit dem eigenen Pkw realisiert werden. Bei Binnenwegen tritt neben den Rückgang des Gesamtverkehrsaufkommens eine leichte Verschiebung der Verkehrsmittelwahl insbesondere zugunsten des Fußverkehrs auf. Hier ist der Rückgang des Verkehrsaufkommens daher am deutlichsten.

Pkw-Verkehr Stadt Meckenheim: Verkehrsaufkommen 2004 bis 2025:

→ Binnenverkehr: -12%

→ Quell- / Zielverkehr: - 8%

→ Durchgangsverkehr (ohne BAB): +5%

Verkehrsnachfrage Güterverkehr

Grundsätzlich wird für die Bundesrepublik Deutschland bis 2025 im Güterverkehr mit kräftigen Zuwächsen gerechnet. Die wesentlichen Entwicklungen sind dabei jedoch im grenzüberschreitenden Güterverkehr zu erwarten. Das durchschnittliche Lkw-Verkehrsaufkommen wird 2004 bis 2025 bundesweit hingegen lediglich um 27% zunehmen. Die zu erwartenden Zuwachsraten in Meckenheim liegen außerhalb der Bundesautobahnen deutlich unter den genannten 27%, insbesondere da durch Meckenheim außerhalb der Bundesautobahnen keine überregional bedeutsamen "Transitstrecken" verlaufen. Der Zuwachs in Meckenheim speist sich daher aus regional und lokal erzeugtem Verkehrswachstum (Quell-/Zielverkehr; regional erzeugter Durchgangsverkehr). Wirksam werden dabei vor allem die zusätzlichen Verkehrsaufkommen aus neuen Gewerbegebieten (neue lokale Einspeisung, die entsprechend in den allgemeinen Zuwachsraten keinen Eingang finden!!!). Für den Durchgangsverkehr ist weiterhin mit einer Verkehrszunahme zu rechnen, allerdings bei weitem nicht mit der für die Region Rheinland prognostizierten Dynamik.

Schwerverkehr Stadt Meckenheim: Verkehrsaufkommen 2004 bis 2025:

→ Binnenverkehr: +/- 0%

→ Quell- / Zielverkehr: +5%

→ Durchgangsverkehr (ohne BAB): +10%

Netzmodell – Verbesserung der Verbindungsqualität

Unabhängig von der Entwicklung der Strukturgrößen in Meckenheim (v.a. Einwohner, Verkehrsmittelwahl) wird durch den Bau der Querspange im Zuge der "Nördlichen Stadterweiterung" Verkehr aus der Region auf Meckenheimer Stadtgebiet verlagert, sowie durch die allgemeine Verbesserung der Verbindungsqualitäten zusätzlicher Verkehr induziert (Stichwort: Reisezeitbudget). Diese Effekte werden im lokalen Maßstab überschlägig über einen Gesamtfahrtenzuschlag von etwas über 1% des Fahrtenaufkommens abgebildet.

Verkehrsprognose Bundesrepublik Deutschland 2025 (Globalprognose) - Personenverkehr

1. Bevölkerungsentwicklung

Haupteingangsgröße für die Prognose der zukünftigen Verkehrsverflechtungen ist die Bevölkerungsentwicklung. Laut der Globalprognose nimmt die Gesamtbevölkerung 2004 bis 2025 leicht ab (-1%), die Anzahl der fahrfähigen Einwohner jedoch zu (+2,3%).

Quelle 1; S. 27 ff.

1.1 Gesamtbevölkerung

- Natürliche Bevölkerungsentwicklung 2004 bis 2025 = -6,5 Mio. Einwohner (= steigender Sterbeüberschuss)
- Außenwanderungen 2004 bis 2025 = + 5,7 Mio. Einwohner (=deutlicher Anstieg der Zuwanderungsgewinne trotz relativ restriktiver Zuwanderungspolitik)
- Fazit: Saldo = -0,8 Mio (-1%)

1.2 fahrfähige Bevölkerung

- fahrfähige Bevölkerungsgruppe der Einwohner über 18 Jahre: 2004/2025 = + 2,3

2. Verkehrsmittelnutzerkosten

Die Verkehrsmittelnutzerkosten bestimmen maßgeblich, wie mobil die Gesellschaft zukünftig sein kann und auf welche Verkehrsmittel zurückgegriffen wird. Insgesamt wird hier laut Globalprognose für das Jahr 2025 keine Kostenentwicklung erwartet, die gravierende Einflüsse auf die Verkehrsmittelwahl zur Folge haben.

Quelle 1: S. 53 ff

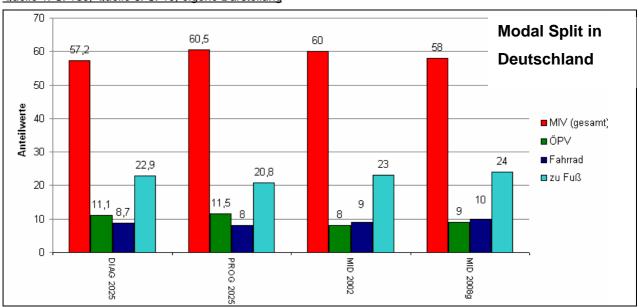
	Pers	sonenverkehr 2005 bis 2020	Güte	erverkehr 2005 bis 2020
Ī	-	MIV 2005 bis 2020 = + 1% p.a. (real)	-	Lkw = - 8 % (gesamt, real)
	-	ÖV 2005 bis 2020 = + 1% p.a. (real)	-	Schiene = - 8 % (gesamt, real)
	-	Luft = + 0% (real)	-	Luft = k.A.

3. Pkw-Besitz / Pkw-Dichte

Pkw-Bestand / Pkw-Dichte stellen zentralen Einflussgrößen des Individualverkehrs dar. Aufgrund des hohen Ausgangsniveaus 2004 und bei degressivem Anstieg der Pkw-Dichte in den vergangenen Jahren wird in der Prognose 2025 mit einer Sättigungsfunktion gearbeitet. Der Pkw-Bestand in Deutschland wächst demnach zwischen 2004 und 2025 um weitere 15%.

Quelle 1: S. 58 ff

- S. 60: "Die Vorausschätzung des Pkw-Bestands erfolgte in räumlicher Disaggregation auf der Ebene der Kreise. Die detaillierten Resultate liegen auf Datenträgern vor und werden hier nicht ausgewiesen, sondern lediglich die aggregierten Ergebnisse für die alten und neuen Bundesländer."
- Für Westdeutschland S. 64: "Der Gesamtzuwachs gegenüber 2006 beläuft sich damit auf 7 %, gegenüber 2004 auf 9 %.1 In absoluten Zahlen bedeutet dies eine Zunahme von 707 Pkw pro 1000 Einwohner über 18 Jahre(2006) auf 756 im Jahr 2025 (..). Daraus und aus der entsprechenden Zahl der Erwachsenen resultiert ein Pkw-Bestand von 42,4 Mio. Er wächst infolge der zunehmenden Einwohnerzahl stärker als die Dichte, nämlich um 12 % (2025/2006) bzw. 15 % (2025/2004)."
- → Zuwachs des Pkw-Besitzes v.a. bei älteren Menschen, Frauen, Ausländern


4. Prognose 2025: Personenverkehr

In der Verkehrsprognose 2025 werden die Quelle-Ziel-Matrizen für die motorisierten Verkehrszweige, also den (motorisierten) Individualverkehr, den Eisenbahnverkehr, den öffentlichen Straßenpersonenverkehr und den Luftverkehr, sowie für den nichtmotorisierten Verkehr, d.h. den Fahrrad- und Fußverkehr, ermittelt. Für die Anpassung des Netzmodells Meckenheim 2025 entscheidend ist die prognostizierte Entwicklung der Pkw-Personenfahrten (+ 8,9%) und insbesondere der Pkw-Verkehrsleistung (Personenkilometer: + 16%). Allerdings ist festzuhalten, dass die tatsächliche Entwicklung in den Jahren 2002 bis 2008 (MiD) der Prognose zuwiderläuft (z.B. Rückgang MIV-Anteil).

Fazit: Zuwächse im Personenverkehr sind (im Bundesdurchschnitt) – wenn überhaupt – lediglich bei der Verkehrsleistung zu erwarten (diese betreffen dann im Wesentlichen das übergeordnete Straßennetz vor allem der Bundesautobahnen → Zunahme der Wegdistanzen).

Quelle 1: S. 129 ff

- Gesamtergebnis 2004 bis 2025 für alle Verkehrszweige: Verkehrsaufkommen = + 2,7%; Verkehrsleistung (Pkm) = + 16%
- MIV-Anteil am Modal Split 2004 bis 2025: Anstieg 83,6 % auf 85,0 % (wg. Zuwachs Pkw-Bestand, siedlungsstrukturelle Entwicklung, zunehmender Freizeitmobilität)
- Pkw-Personenfahrten 2004 bis 2025: + 8,9 % (von 57,3 auf 62,4 Mrd.)
- Pkw-Verkehrsleistung 2004 bis 2025: + 16% (von 887,4 Mrd. auf 1029,7 Mrd. Pkm)
- andere motorisierte Verkehrsträger: starke Zugewinne im Luftverkehr; leichte Zugewinne Eisenbahn (insb. Verkehrsleistung); Rückgang Modal Split beim ÖSPV
- nicht motorisierte Verkehrsträger: "Die Zahl der **Fahrradfahrten** und der **Fußwege** nimmt um 5,7 % bzw. 7,1 % ab. Ihr Anteil reduziert sich damit von (zusammen) rund 32 % auf rund 29 % (Aufkommen) bzw. von 5,9 % auf 4,7 % (Leistung)." (Begründung: demografischer Wandel; Suburbanisierung, Bringen und Holen mit dem Pkw von Schule, Freizeitattraktivitäten u.a.)

Quelle 1: S. 130; Quelle 3: S. 10; eigene Darstellung

DIAG 2025 = Diagnose 2004 aus "Quelle 1: Prognose der deutschlandweiten Verkehrsverflechtungen 2025";

S. 130, eigene Berechnungen

PROG 2025 = Prognose 2025 aus "Quelle 1: Prognose der deutschlandweiten Verkehrsverflechtungen 2025";

S. 130, eigene Berechnungen

MiD 2002 = Erhebungsdaten 2002 aus "Quelle 3: Mobilität in Deutschland 2008, S. 10"

MiD 2002 = Erhebungsdaten 2008 aus "Quelle 3: Mobilität in Deutschland 2008, S. 10"

Verkehrsprognose Bundesrepublik Deutschland 2025 (Globalprognose) - Güterverkehr

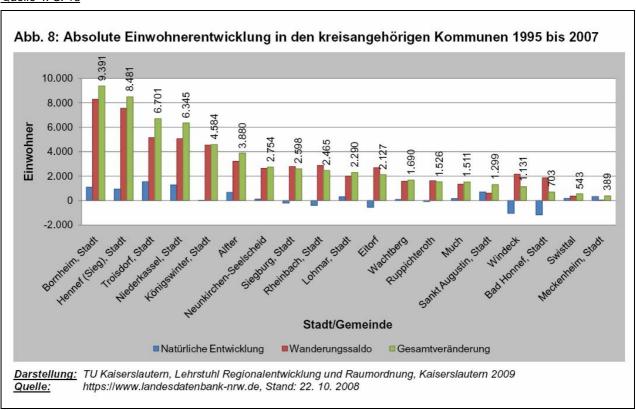
5. Prognose 2025: Güterverkehr

Schwerpunkt der Güterverkehrsprognosen 2025 im Auftrag des BMVBS sind die regional und sektoral differenzierten Verflechtungsmatrizen der Verkehrsträger Eisenbahnverkehr, Straßengüterfernverkehr und Binnenschifffahrt. Zielwerte der Prognose sind Transportaufkommen (Tonnen) und Transportleistung (Tonnenkilometer) sowie die Transportweite. Nach Verkehrsprognose ist in den nächsten Jahren weiterhin mit einem kräftigen Anstieg des Transportaufkommens und insbesondere der Transportleistung und –weiten zu rechnen. Die starken Zuwächse sind jedoch auf den überregionalen Relationen zu erwarten und betreffen damit vor allem die Bundesautobahnen und - je nach regionaler Verkehrsinfrastruktur – in geringerem Maße auch Bundes- und Landesstraßen.

<u>Quelle 1: S. 200 ff</u>
Zusammenfassung der Prognoseergebnisse

Bereich	Merkmal / Einheit	Veränderung 2004 - 2025
Straßengüternahverkehr	Verkehrsaufkommen (t)	+ 3%
aktuell zu 67% Anteil Steine & Erden, lso Bauwirtschaft)	Verkehrsleistung (tkm)	+ 11%
,	Transportweite	+ 8%
Straßengüterfernverkehr	Verkehrsaufkommen (t)	+ 55%
	Verkehrsleistung (tkm)	+ 84%
	Transportweite	+ 41%

- S. 205: zwischen 1995 und 2005 hat die Transportleistung im Güterverkehr um 3,2% p.a. zugenommen, für den Zeitraum 2004 bis 2025 wird von durchschnittlich 2,8% p.a. ausgegangen, wobei die Dynamik in den "späteren" Jahren bis 2025 abnehmen wird
- S. 208: aufgrund der starken Bedeutung des Straßengüternahverkehrs (53%) für den gesamten Straßengüterverkehr, wird das durchschnittliche Verkehrsaufkommen 2004 bis 2025 lediglich um 27% zunehmen; bei der Transportleistung besitzt der Straßengüternahverkehr lediglich einen geringen Anteil (7%); daher überwiegt die Dynamik des Fernverkehrs und führt zu einem Anstieg der Lkw-Transportleistung um 79%
- S. 214: Die Zuwächse treten überproportional stark im grenzüberschreitenden Verkehr auf (Versand, Empfang + Transit); die Zuwachsraten im Binnenverkehr sind hingegen deutlich geringer


Verkehrsprognose 2025 Stadt Meckenheim

Bevölkerungsentwicklung

Im Kreisentwicklungskonzept 2020 für den Rhein-Sieg-Kreis (Entwurfsfassung liegt vor) wurden verschiedene Prognosen zusammengeführt. In allen Prognosen wird für den Rhein-Sieg-Kreis eine positive Bevölkerungsentwicklung prognostiziert, allerdings kann die Stadt Meckenheim nach Ansicht der Gutachter von der Stärke des Kreises wenig profitieren. Vielmehr wird eine stärkere Konzentration auf das regionale Zentrum Bonn sowie die Umlandgemeinden im nördlichen Gürtel um Bonn herum erwartet. In allen Prognosen wird für Meckenheim eine eher rückläufige Einwohnerentwicklung erwartet (nach IT.NRW Rückgang von 24.679 Einwohnern in 2007 auf 21.700 Einwohner in 2030 → -12%). Da Meckenheim lediglich noch in der Altersgruppe der über 65-jährigen Zuwächse verzeichnet, ist insgesamt auch mit einem Rückgang der fahrfähigen Bevölkerung zu rechnen.

1.1 Gesamtbevölkerung

Quelle 4: S. 18

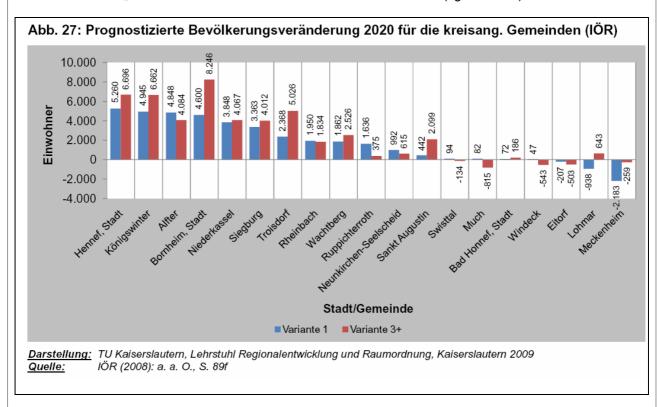
Quelle 4: S. 29 ff

- Entwicklung der Altersgruppen in den kreisangehörigen Kommunen 1995 bis 2007: "Am deutlichsten werden die altersstrukturellen Verschiebungen bei Betrachtung der zahlenmäßigen Entwicklung der ab 65-Jährigen. In dieser Bevölkerungsgruppe war in allen kreisangehörigen Kommunen ein Wachstum von mindestens 25 % zu verzeichnen,[..] in Meckenheim sogar um 100 %."

Bezugnahme auf "Vorausberechnung der Bevölkerung in den kreisfreien Städten und Kreisen Nordrhein-Westfalens 2005 bis 2025/2050" des Landesamtes für Datenverarbeitung und Statistik NRW (LDS):

- Rhein-Sieg-Kreis: 2005 bis 2025 = rückläufige natürliche Entwicklung von 3,0 % (17.800 Einwohner)

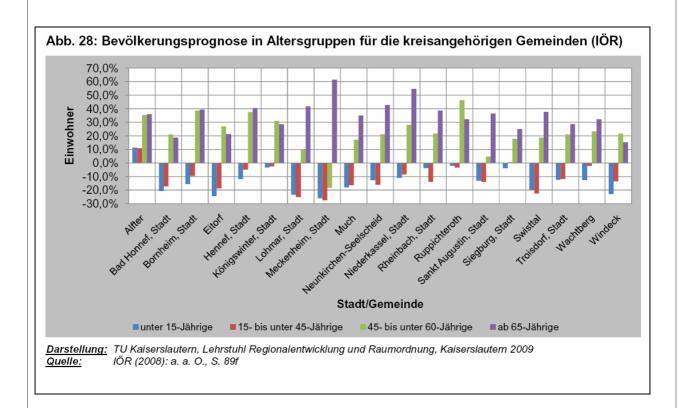
bei gleichzeitigen Wanderungsgewinnen von 11,9 % (70.700 Einwohner) \rightarrow bis 2025 wird ein Einwohnerstand von 649.500 Einwohnern prognostiziert. Das entspricht einem Zuwachs von 8,9 % gegenüber 2005.


- Rhein-Sieg-Kreis: "Beim Vergleich mit umliegenden und übergeordneten Raumeinheiten wird deutlich, wie positiv die Perspektiven des Kreises eingeschätzt wurden. Die Prognose für den Rhein-Sieg-Kreis hebt sich sowohl im Regierungsbezirk Köln (5,4 %) als auch gegenüber dem Land Nordrhein-Westfalen (–2,6 %) positiv ab."

Bezugnahme auf aktualisierte "Vorausrechnung der Bevölkerung 2008 bis 2030/2050 in NRW" von der zwischenzeitlich zu "Landesbetrieb Information und Technik Nordrhein-Westfalen" (IT.NRW) umbenannten Institution:

Rhein-Sieg-Kreis: "Für den Rhein-Sieg-Kreis fällt diese bereits deutlich zurückhaltender aus. Ausgehend von 599.000 Einwohnern Anfang 2008 wird ein Wachstum um 3,1 % auf 617.700 Einwohner im Jahr 2030 prognostiziert. Dieses Ergebnis entsteht durch einen angenommenen natürlichen Bevölkerungsrückgang um 4,5 % bei gleichzeitigen Wanderungsgewinnen von 7,6 %. Damit berücksichtigt es die derzeit deutlich abnehmende Dynamik der Bevölkerungsentwicklung im Rhein-Sieg-Kreis."

Bezugnahme auf "Regionales Handlungskonzept Wohnen 2020 Bonn/Rhein-Sieg/Ahrweiler" des :rak vom Leibniz-Institut für ökologische Raumentwicklung e. V. (IÖR):


- Rhein-Sieg-Kreis: Für den Rhein-Sieg-Kreis wird weiteres Bevölkerungswachstum erwartet, das von 2005 bis 2020 bei 33.000 bis 45.000 Einwohnern bzw. 5,5 bis 7,5 % läge.
- "Trotz des insgesamt prognostizierten Wachstums im Kreis wird die Herausbildung von Gewinner-, Stagnations- und Verliererräumen erwartet. Schwerpunkte des Wachstums lägen insbesondere in den bereits heute "boomenden" Städten und Gemeinden rund um Bonn (vgl. Abb. 27)."

1.2 fahrfähige Bevölkerung

Quelle 4: S. 32 ff.

- Rhein-Sieg-Kreis: Die Zahl der Menschen im berufstätigen Alter von 20 bis 65 Jahren würde [nach der Prognose] um 5,2 % steigen, bei einer Verlagerung zugunsten älterer Altersgruppen. Die Zahl der Menschen ab 65 Jahren würde bis 2025 jedoch mit 48,1 % deutlich über dem Landes- und auch Bundesdurchschnitt (vgl. Tab. 4) steigen.

 für Meckenheim wird lediglich noch in der Altersgruppe der ab 65-jährigen ein Zuwachs erwartet; wie hoch der Anteil der fahrfähigen Personen in dieser Altersgruppe ist, kann nicht vorausgeschätzt werden; insgesamt ist jedoch für Meckenheim von einem Rückgang der fahrfähigen Personen auszugehen.

2. Verkehrsmittelnutzerkosten

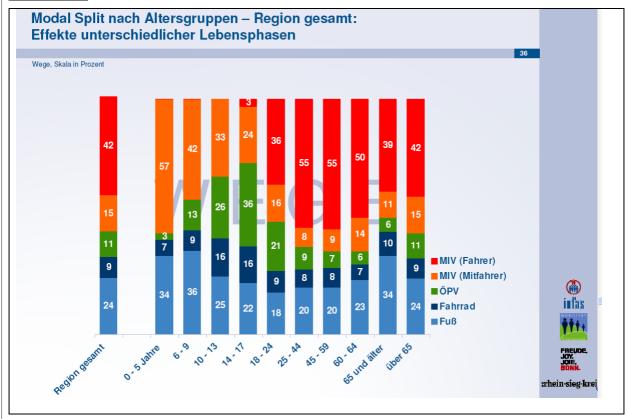
Die Ermittlung der Verkehrsmittelnutzerkosten basiert auf Annahmen über globale Entwicklungen, regionale Daten liegen nicht vor. Es kann jedoch davon ausgegangen werden, dass die Entwicklung der Verkehrsmittelnutzerkosten im Bereich des Bundestrends liegt.

3. Pkw-Besitz / Pkw-Dichte

Es liegen keine disaggregierten Daten vor. Es kann jedoch davon ausgegangen werden, dass die Entwicklung von Pkw-Besitz und Pkw-Dichte im Bereich des Bundestrends liegt.

4. Verkehrsinfrastruktur

Bis 2025 ist nicht mit einer Realisierung von im regionalen Maßstab bedeutsamen Projekten zu rechnen. Regionale Verkehrsverlagerungen sind daher infrastrukturseitig nicht zu erwarten.


Quelle 6: Übersichtskarten, Projektlisten

- Vordringlicher Bedarf: keine unmittelbar relevanten Projekte in der Region (Venusbergtunnel wird von IHK noch gefordert, ist aber im BVWP nicht mehr enthalten)
- Weiterer Bedarf: Ausbau A61 Meckenheim Bliesheim

5. Prognose 2025: Personenverkehr

Es kann relativ gesichert von einer sinkenden Einwohnerzahl für Meckenheim ausgegangen werden. Darüber hinaus deuten die Entwicklungen der letzten Jahre darauf hin, dass die in der Verkehrsprognose des Bundesverkehrsministeriums getroffenen Annahmen einer weiterhin starken Verlagerung zum Verkehrsträger "Personenkraftwagen" nicht haltbar sind. Insbesondere haben die Ergebnisse der MiD 2002 und 2008 für die Region Bonn/Rhein-Sieg-Kreis gezeigt, dass gerade bei der in Meckenheim rasant wachsenden Gruppe der über 65-jährigen der Anteil von ÖV, Fahrrad und insbesondere des Fußverkehrs deutlich über dem Durchschnitt aller Altersgruppen liegt (laut MiD für die Region Bonn/Rhein-Sieg).

Quelle 3: S. 36

Durch die Entwicklungsmaßnahme "Nördliche Stadterweiterung" wird Flächennachfrage in fußläufiger Entfernung des Bahnhofs und des Stadtzentrum gebündelt. Hier wird entsprechend die Verkehrsnachfrage auch tendenziell eher auf ÖV, Fahrrad- und Fußverkehr ausgerichtet. In den übrigen Stadtbereichen von Meckenheim ist daher von einem Rückgang der Flächennachfrage und somit auch des Verkehrsaufkommens zu rechnen.

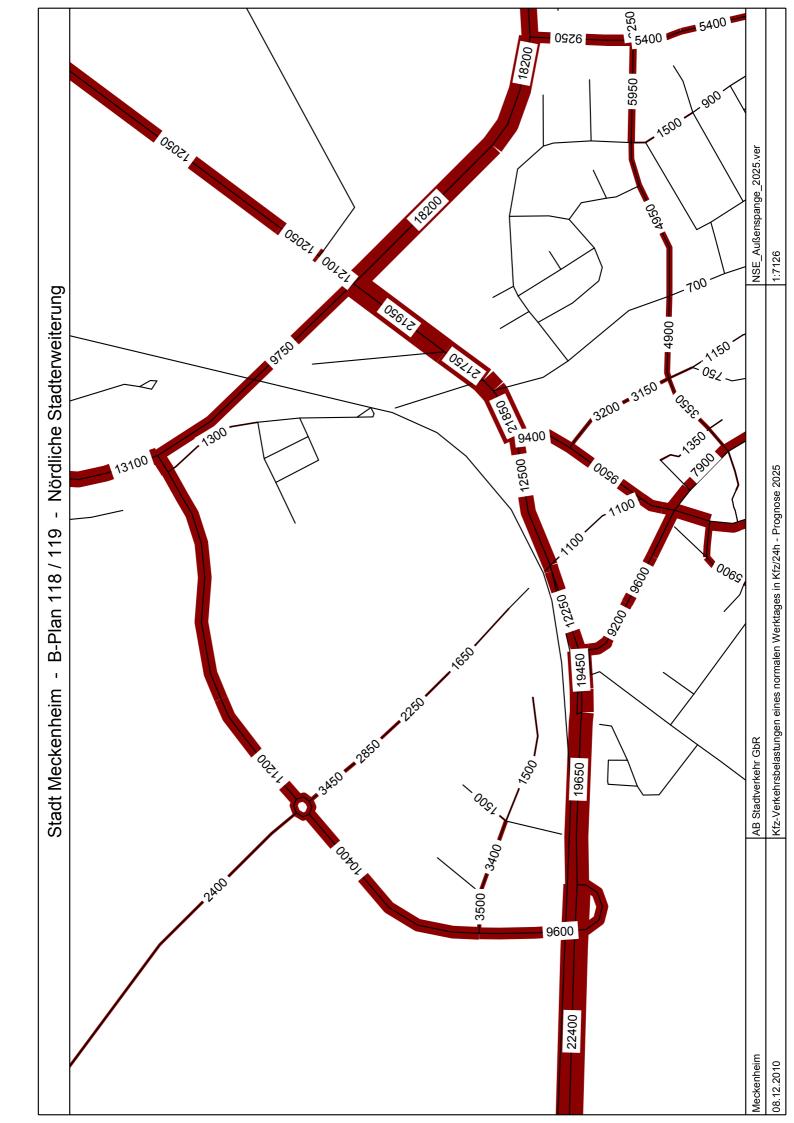
Die Entwicklung des Verkehrsaufkommens (Pkw-Fahrten) und der Verkehrsleistung wird tendenziell asymmetrisch verlaufen. Bei weiterhin steigender Verkehrsleistung und Zunahme der durchschnittlichen Wegelängen, wird das Netz der Hauptverkehrsstraßen bis 2025 weitere, leichte Zunahmen verzeichnen. Bei den Quell-/ Zielwegen wird die Ausrichtung auf das regionale Zentrum Bonn unverändert stark bleiben und weiterhin in der Regel mit dem eigenen Pkw realisiert werden. Bei Binnenwegen tritt neben den Rückgang des Gesamtverkehrsaufkommens eine leichte Verschiebung der Verkehrsmittelwahl insbesondere zugunsten des Fußverkehrs auf. Hier ist der Rückgang des Verkehrsaufkommens daher am deutlichsten.

6. Prognose 2025: Güterverkehr

Die wesentlichen Entwicklungen sind im grenzüberschreitenden Güterverkehr zu erwarten. Das durchschnittliche Lkw-Verkehrsaufkommen wird bundesweit 2004 bis 2025 lediglich um 27% zunehmen (wg. der großen Bedeutung des "nicht-dynamischen" Straßengüternahverkehrs; vgl. auch Entwicklung des Binnenverkehrs innerhalb der IHK Region Rheinland). Die zu erwartenden Zuwachsraten in Meckenheim liegen außerhalb der Bundesautobahnen deutlich unter den 27%, insbesondere da durch Meckenheim außerhalb der Autobahnen keine überregional bedeutsamen "Transitstrecken" verlaufen. Der Zuwachs in Meckenheim speist sich daher aus regional und lokal erzeugtem Verkehrswachstum (Quell-/Zielverkehr; regional erzeugter Durchgangsverkehr). Wirksam werden dabei vor allem die zusätzlichen Verkehrsaufkommen aus neuen Gewerbegebieten (neue lokale Einspeisung!!!). Für den Durchgangsverkehr ist weiterhin mit einer Verkehrszunahme zu rechnen, allerdings wird dieser bei weitem nicht die für die Region prognostizierte Dynamik erreichen.

Quelle 7: S. 10

		II-	HK-Rheinlan	d	Nordrhein-Westfalen			Bundesrepublik Deutschland		
		2004	2025	Veränder- ung	2004	2025	Veränder- ung	2004	2025	Veränder- ung
	Binnen	291	258	- 11%	1.979	1.609	- 19%	41.401	61.900	50%
Bahn	Quell	6.590	9.844	49%	10.579	15.665	48%	20.961	35.877	71%
bann	Ziel	5.115	7.287	42%	9.116	13.434	47%	19.833	33.696	70%
	Transit	9.965	16.821	69%	10.191	18.147	78%	9.700	20.433	110%
	Binnen	4.607	5.071	10%	20.336	22.139	9%	235.796	333.708	42%
C 4	Quell	20.444	31.997	57%	39.415	64.292	63%	47.894	99.407	108%
Strasse	Ziel	17.871	28.842	61%	34.732	58.155	67%	51.874	113.375	119%
	Transit	47.588	108.960	129%	65.228	152.174	133%	56.900	157.646	177%


Veränderung der Transportleistung 2004 – 2025 in Mio.Tkm

10

Anlage 2

Verkehrsprognose 2025

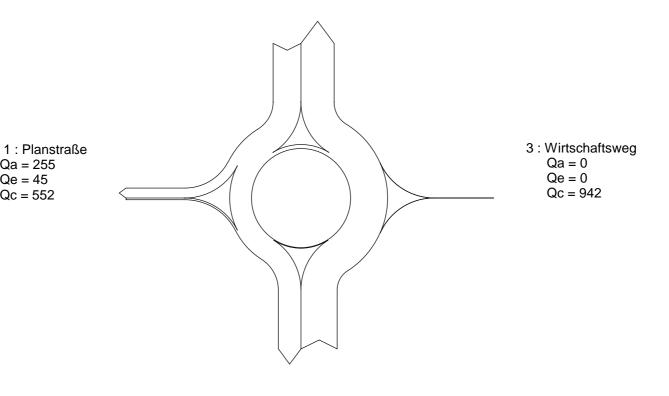
Kfz-Verkehrsbelastungen (normaler Werktag; Kfz/24 Stunden)

Verkehrsfluss - Diagramm als Kreis

KREISEL_P2_VORMITTAGS.KRS Datei: Projekt: Verkehrsgutachten Meckenheim

Projekt-Nummer:

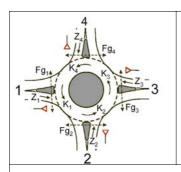
Qa = 255


Qe = 45

Qc = 552

Knoten: L261 / Planstraße Unternehmerpark

Stunde: Vormittagsspitze 7-8 Uhr


alle Kraftfahrzeuge 1000 alle Kraftfahrzeuge / h 4:L261 Qa = 842Qe = 707Qc = 100

2:L261 Qa = 577Qe = 922Qc = 20

Sum = 1674

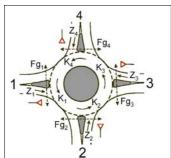
HBS 2001, Formblatt 3a: Beurteilung eines Kreisverkehrsplatzes

Datei: Kreisel_P2_vormittags

Kreiseverkehrsplatz: Unternehmerpark Kottenforst, L261 - Unternehmerpark

Stunde: Spitzenstunde vormittags 7-8 Uhr

Zielvorgaben:


Mittlere Wartezeit w = 45 s Qualitätsstufe D

Matrix der Ströme/Verkehrsstärken [Fz/h]

von Zufahrt	1	2	nach 2	Zufahrt 4	5	6	Summe der Verkehrsstärken in der Zufahrt qr,I	Summe der Verkehrsstärken im Kreis qki
	1	2	3	4 5 6		7	8	
1	0	28	0	22	-	-	50	568
2	103	0	0	832	-	-	935	22
3	0	0	0	0	-	-	0	957
4	160	568	0	0	-	-	728	103
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-

Geometrische Randbedingungen

	Coomerisone Ranascanigungen								
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)						
			9						
Planstraße	1	Z 1	1						
T lationaise	·	K ₁	1						
L 261	2	Z 2	1						
L 201		K ₂	1						
Wirtschaftsweg	3	Z ₃	1						
wirtschartsweg	3	К3	1						
L 261	4	Z 4	1						
L 201	4	K 4	1						
	5	Z ₅	-						
-	3	K ₅	-						
_	6	Z ₆	-						
-	0	K ₆	- -						

Datei: Kreisel_P2_vormittags

Kreiseverkehrsplatz: Unternehmerpark Kottenforst, L261 - Unternehmerpark

Stunde: Spitzenstunde vormittags 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken										
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	qpe,i [Pkw-E/h]	q _{Fg,i} [Fg/h]	
-	-	10	11	12	13	14	15	16	17	
1	Z ₁	36	9	0	0	0	45	50	70	
	K ₁	521	31	0	0	0	552	568	-	
2	Z ₂	896	26	0	0	0	922	935	70	
	K ₂	16	4	0	0	0	20	22	_	
3	Z ₃	0	0	0	0	0	0	0	70	
	К3	912	30	0	0	0	942	957	-	
4	Z 4	667	40	0	0	0	707	728	70	
-T	K ₄	94	6	0	0	0	100	103	-	
5	Z ₅	-	-	-	-	-	-	-	_	
	K ₅	-	-	-	-	-	-	-	-	
6	Z ₆	-	-	-	-	-	-	-	-	
J	K ₆	-	-	_	-	_	-	_	_	

Bestimmung der Kapazität Zufahrt Grundkapazität Verkehrsstärken Abminderungsfaktor Kapazität G_i [Pkw-E/h] für Fußgänger f [-] C_i [Pkw-E/h] $q_{z,i}$ [Pkw-E/h] q k,i [Pkw-E/h] (Abb. 7-18a, 7-18b) (GI. 7-20) (Sp. 16) (Sp. 16) (Abb. 7-17) 16 17 18 19 20 1 50 568 763 756 2 935 22 1230 1218 0 957 474 474 3 4 728 103 1156 1145 5 6

	Beurteilung der Verkehrsqualität									
Zufahrt	Kapazitätsreserve R _i [Pkw-E/h] (Gl. 7-21)	mittlere Wartezeit W _i [s] (Abb. 7-19, Tab. 7-1)	Vergleich mit der angestrebten Wartezeit w	Qualitätsstufe QSV [-]						
	23	24	25	26						
1	706	5	45	A						
2	283	12	45	В						
3	474	0	45	A						
4	417	9	45	A						
5	-	-	-	-						
6	-	-	-	-						
		Erreichbare Qualitätsstufe QSV _{ges}		В						

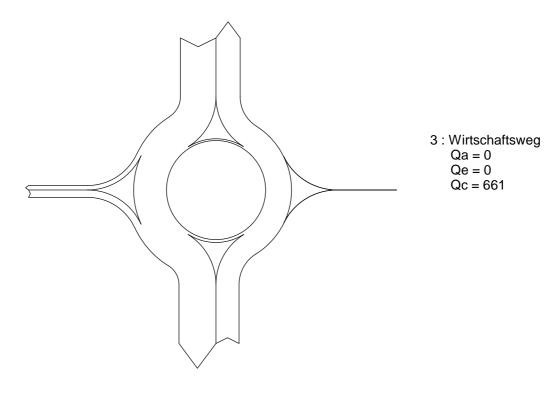
Verkehrsfluss - Diagramm als Kreis

Datei: KREISEL_P2_NACHMITTAGS.KRS
Projekt: Verkehrsgutachten Meckenheim

Projekt-Nummer:

1 : Planstraße

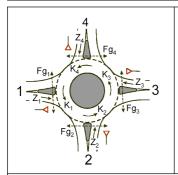
Qa = 115


Qe = 185

Qc = 834

Knoten: L261 / Planstraße Unternehmerpark

Stunde: Prognosefall 2: Nachmittagsspitze 17-18 Uhr


1000 alle Kraftfahrzeuge / h 4: L 261 Qa = 616 Qe = 904 Qc = 45

2 : L 261 Qa = 944 Qe = 586 Qc = 75

Sum = 1675

HBS 2001, Formblatt 3a: Beurteilung eines Kreisverkehrsplatzes (ohne Fußgänger)

Datei: KREISEL_P2_NACHMITTAGS.KRS

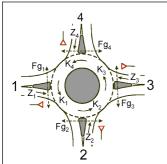
Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / Planstraße Unternehmerpark

Stunde: Prognosefall 2: Nachmittagsspitze 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D


Matrix der Ströme/Verkehrsstärken [Fz/h]

			nach 2	Zufahrt	Summe der	Summe der		
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	110	0	75	-	-	185	834
2	45	0	0	541	-	-	586	75
3	0	0	0	0	-	-	0	661
4	70	834	0	0	-	-	904	45
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	-	-

Geometrische Randbedingungen

Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
Planstraße	1	Z ₁	1
T lanstraise	'	K ₁	1
L 261	2	Z ₂	1
L 201	-	K ₂	1
Wirtschaftsweg	3	Z ₃	1
Willischartsweg	3	К3	1
L 261	4	Z ₄	1
L 201	4	K 4	1
		Z ₅	-
		K ₅	<u>- </u>
_	_	Z ₆	-
		K 6	-

HBS 2001, Formblatt 3b: Beurteilung eines Kreisverkehrsplatzes (ohne Fußgänger)

Datei: KREISEL_P2_NACHMITTAGS.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / Planstraße Unternehmerpark

Stunde: Prognosefall 2: Nachmittagsspitze 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken									
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	173	12	0	0	0	185	192	70
	K ₁	823	11	0	0	0	834	840	-
2	Z ₂	575	11	0	0	0	586	592	70
	K ₂	70	5	0	0	0	75	78	-
3	Z ₃	0	0	0	0	0	0	0	70
3	K ₃	645	16	0	0	0	661	670	-
4	Z ₄	887	17	0	0	0	904	913	70
	K 4	41	4	0	0	0	45	47	-
5	Z ₅	-	-	-	-	-	-	-	-
	K ₅	=	=	-	-	-	-	-	-
6	Z ₆	=	=	-	-	-	-	-	-
0	K ₆	-	-	-	-	-	-	-	-

	Bestimmung der Kapazität							
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität			
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)			
	18	19	20	21	22			
1	192	840	557	-	557			
2	592	78	1171	-	1171			
3	0	670	683	-	683			
4	913	47	1199	-	1199			
5 -		-	-	-	-			
6	-	-	-	-	-			

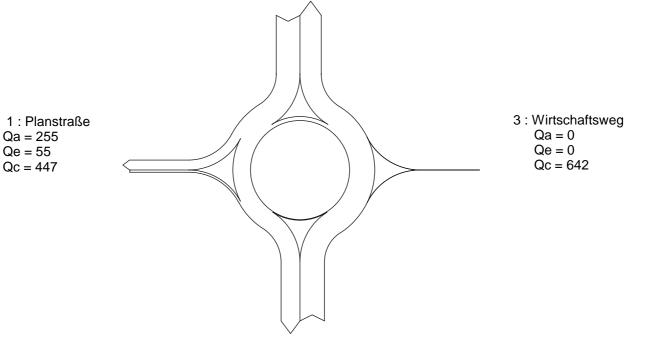
Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 45 Α 365 10 2 579 6 45 Α 3 683 0 45 4 286 12 45 В 5 6 В Erreichbare Qualitätsstufe QSV_{ges}

Kreisel 7.1.10

AB :	Stadtverkehr	GbR
------	--------------	------------

Verkehrsfluss - Diagramm als Kreis

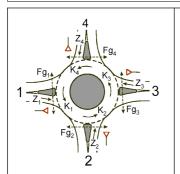
Datei: KREISEL_P3_VORMITTAGS.KRS
Projekt: Verkehrsgutachten Meckenheim


Projekt-Nummer:

Knoten: L261 / Planstraße Unternehmerpark
Stunde: Prognosefall 3: Vormittagsspitze 7-8 Uhr

0 1000 alle Kraftfahrzeuge / h

alle Kraftfahrzeuge


4: L 261 Qa = 542 Qe = 602 Qc = 100

2: L 261 Qa = 482 Qe = 622 Qc = 20

Sum = 1279

HBS 2001, Formblatt 3a: Beurteilung eines Kreisverkehrsplatzes (ohne Fußgänger)

Datei: KREISEL_P3_VORMITTAGS.KRS

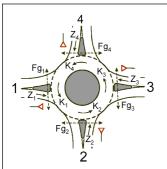
Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / Planstraße Unternehmerpark

Stunde: Prognosefall 3: Vormittagsspitze 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D


Matrix der Ströme/Verkehrsstärken [Fz/h]

			nach 2	Zufahrt			Summe der	Summe der
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	35	0	20	-	-	55	447
2	100	0	0	522	-	-	622	20
3	0	0	0	0	-	-	0	642
4	155	447	0	0	-	-	602	100
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-

Geometrische Randbedingungen

Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
Planstraße	1	Z ₁	1
T lanstraise	'	K ₁	1
L 261	2	Z ₂	1
L 201		K ₂	1
Wirtschaftsweg	3	Z ₃	1
Willischartsweg	3	К3	1
L 261	4	Z ₄	1
L 201	4	K 4	1
		Z ₅	-
		K ₅	<u>- </u>
_	_	Z ₆	-
		K 6	-

HBS 2001, Formblatt 3b: Beurteilung eines Kreisverkehrsplatzes (ohne Fußgänger)

Datei: KREISEL_P3_VORMITTAGS.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / Planstraße Unternehmerpark

Stunde: Prognosefall 3: Vormittagsspitze 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

				Verkeh	rsstärken				
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	44	11	0	0	0	55	61	70
	K ₁	422	25	0	0	0	447	460	-
2	Z ₂	603	19	0	0	0	622	632	70
	K ₂	16	4	0	0	0	20	22	-
3	Z ₃	0	0	0	0	0	0	0	70
J	K ₃	619	23	0	0	0	642	654	-
4	Z ₄	568	34	0	0	0	602	620	70
_	K ₄	94	6	0	0	0	100	103	=
5	Z ₅	-	-	-	-	-	-	-	-
3	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	-	-	-	-	-	-	-	-
	K ₆	-		-	-	-			

		Bestim	mung der Kapazität		
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)
	18	19	20	21	22
1	61	460	847	-	847
2	632	22	1221	-	1221
3	0	654	695	-	695
4	620	103	1149	-	1149
5	-	-	-	-	-
6	-	-	-	-	-

Beurteilung der Verkehrsqualität Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe Zufahrt R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 5 45 Α 786 2 589 6 45 Α 3 695 0 45 4 529 7 45 Α 5 6 Erreichbare Qualitätsstufe QSV_{ges}

Kreisel 7.1.10

AB Stadtverkehr GbR

Bocholt

Verkehrsfluss - Diagramm als Kreis

Datei: KREISEL_P3_NACHMITTAGS.KRS
Projekt: Verkehrsgutachten Meckenheim

Projekt-Nummer:

Knoten: L261 / Planstraße Unternehmerpark Stunde: Nachmittagsspitze 17-18 Uhr

0 1000 alle Kraftfahrzeuge / h

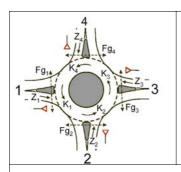
1: Planstraße

Qa = 115

Qe = 225

Qc = 633

alle Kraftfahrzeuge


4: L 261 Qa = 423 Qe = 703 Qc = 45

3: Wirtschaftsweg
Qa = 0
Qe = 0
Qc = 468

2: L 261 Qa = 768 Qe = 378 Qc = 90

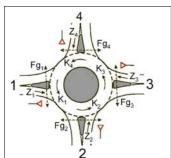
Sum = 1306

HBS 2001, Formblatt 3a: Beurteilung eines Kreisverkehrsplatzes

Datei: KREISEL_P3_nachMITTAGS.krs

Kreiseverkehrsplatz: Verkehrsgutachten Meckenheim, L261 / Planstraße Unterne.

Stunde: Nachmittagsspitze 17-18 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

von				Zufahrt 			Summe der Verkehrsstärken in	Summe der Verkehrsstärken im
Zufahrt	1	2	3	4	5	6	der Zufahrt qr,I	Kreis qki
	1	2	3	4	5	6	7	8
1	0	139	0	93	-	-	232	637
2	47	0	0	335	-	-	382	93
3	0	0	0	0	-	-	0	475
4	73	637	0	0	-	-	710	47
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-

Geometrische Randbedingungen

Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
Planstraße	1	Z ₁	1
Tianotraiso	·	K ₁	1
L 261	2	Z ₂	1
201	2	K ₂	1
Wirtschaftsweg	3	Z ₃	1
Williamanaweg	3	К3	1
L 261	4	Z 4	1
L 201	7	K 4	1
	5	Z ₅	-
-	3	K ₅	-
_	6	Z ₆	-
-		K ₆	-

Datei: KREISEL_P3_nachMITTAGS.krs

Kreiseverkehrsplatz: Verkehrsgutachten Meckenheim, L261 / Planstraße Unterne.

Stunde: Nachmittagsspitze 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

	2								
				Verkeh	rsstärken				
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	212	13	0	0	0	225	232	70
•	K ₁	625	8	0	0	0	633	637	-
2	Z ₂	370	8	0	0	0	378	382	70
	K ₂	85	5	0	0	0	90	93	-
3	Z ₃	0	0	0	0	0	0	0	70
	K ₃	455	13	0	0	0	468	475	-
4	Z 4	689	14	0	0	0	703	710	70
-	K ₄	41	4	0	0	0	45	47	-
5	Z ₅	-	-	-	-	-	-	-	_
	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	-	-	-	-	-	-	-	-
J	K ₆	-	-	-	-	-	_	_	-

Bestimmung der Kapazität Zufahrt Verkehrsstärken Grundkapazität Abminderungsfaktor Kapazität G_i [Pkw-E/h] für Fußgänger f [-] C_i [Pkw-E/h] $q_{z,i}$ [Pkw-E/h] q k,i [Pkw-E/h] (Abb. 7-18a, 7-18b) (GI. 7-20) (Sp. 16) (Sp. 16) (Abb. 7-17) 16 17 18 19 20 1 232 637 709 703 2 93 1165 1154 0 475 838 830 3 4 710 47 1207 1195 5 6

<u> </u>	1	Beurteilu	ng der Verkehrsq	ualität	-
Zufahrt	Kapazitätsreserve R _i [Pkw-E/h] (Gl. 7-21)	\	Wartezeit V _i [s] , Tab. 7-1)	Vergleich mit der angestrebten Wartezeit w	Qualitätsstufe QSV [-]
	23	:	24	25	26
1	471		8	45	A
2	772		5	45	A
3	830		0	45	A
4	485		7	45	A
5	-		-	-	-
6	-		-	-	-
		Erreichbare Qua	itätsstufe QSV _{ges}		A

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Diagnose Spitzenstunde morgens
Signalisierungszustand 1 (typisch morgens) mit Umlaufzeit 135 sek.

Projek	rt·		Knotenpunkt mit Lichtsignalanlage a) Nachweis der Verkehrsqualität im Kraftfahrzeugverkehr Stadt:																
	npunkt: schnitt:								·			·				Stadt: Datum: Bearbeite	er:		
		t _∪ =	135	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	$q_{\rm S}$	q _{SM}	t _B	n _C	С	g	N_{GE}	WI	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
В	Х	1 G	45	0,333	90	361	13,5	2,8	1970	entf.	1,83	24,6	656,7	0,55	0,00	37	0	37	C
В	Χ	$1L_{frei}$	10	0,074	125	51	1,9	3,9	2355	entf.	1,53	6,5	174,4	0,29	0,00	59	0	59	D
D	Χ	2 G	60	0,444	75	674	25,3	1,2	1800	entf.	2,00	30,0	800,0	0,84	2,78	33	13	46	С
D	Χ	$2L_{frei}$	25	0,185	110	238	8,9	8,4	1903	entf.	1,89	13,2	352,4	0,68	0,38	51	4	55	D
С	Χ	3 G	25	0,185	110	188	7,1	5,3	1949	entf.	1,85	13,5	361,0	0,52	0,00	50	0	50	С
С	Χ	$3L_{frei}$	20	0,148	115	234	8,8	2,6	1774	entf.	2,03	9,9	262,8	0,89	3,61	56	50	106	F
Α	Χ	4 G	20	0,148	115	113	4,2	14,2	1673	entf.	2,15	9,3	247,8	0,46	0,00	53	0	53	D
Α	Χ	4L _{frei}	9	0,067	126	15	0,6	26,7	1703	entf.	2,11	4,3	113,5	0,13	0,00	59	0	59	D

Qualitätsstufe

F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/}R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	2,8	0,0	0,0	3,9	1,2	0,0	0,0	8,4	5,3	0,0	0,0	2,6	14,2	0,0	0,0	26,7
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,95	0,97	0,99	0,99	0,99	0,84	0,99	0,99	-1,26
Anteil > 15%	0,96	1,00	1,00	0,94	0,98	1,00	1,00	0,89	0,93	1,00	1,00	0,96	0,82	1,00	1,00	0,71
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,99	1,00	1,00	0,98	0,90	1,00	1,00	0,95	0,97	1,00	1,00	0,89	0,84	1,00	1,00	0,64

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Diagnose Spitzenstunde morgens Signalisierungszustand 2 (typisch morgens) mit Umlaufzeit 160 sek.

Form	blatt 3																		
	kt: enpunkt: bschnitt:															Stadt: Datum: Bearbeit	er:		
		t _U =	160	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q _S	q _{SM}	t _B	n _C	С	g	N_{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
В	Χ	1 G	60	0,375	100	361	16,0	2,8	1970	entf.	1,83	32,8	738,8	0,49	0,00	38	0	38	C
В	Х	$1L_{frei}$	20	0,125	140	51	2,3	3,9	1962	entf.	1,83	10,9	245,3	0,21	0,00	63	0	63	D
D	Χ	2 G	70	0,438	90	674	30,0	1,2	1800	entf.	2,00	35,0	787,5	0,86	2,94	40	13	54	D
D	Х	$2L_{frei}$	30	0,188	130	238	10,6	8,4	1903	entf.	1,89	15,9	356,8	0,67	0,25	60	3	63	D
С	Χ	3 G	30	0,188	130	188	8,4	5,3	1949	entf.	1,85	16,2	365,5	0,51	0,00	58	0	58	D
С	Х	$3L_{frei}$	25	0,156	135	234	10,4	2,6	1774	entf.	2,03	12,3	277,2	0,84	2,91	66	38	103	F
Α	Χ	4 G	20	0,125	140	113	5,0	14,2	1673	entf.	2,15	9,3	209,1	0,54	0,00	66	0	66	D
Α	Χ	4L _{frei}	9	0,056	151	15	0,7	26,7	1703	entf.	2,11	4,3	95,8	0,16	0,00	72	0	72	E

Qualitätsstufe F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/}R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	2,8	0,0	0,0	3,9	1,2	0,0	0,0	8,4	5,3	0,0	0,0	2,6	14,2	0,0	0,0	26,7
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,95	0,97	0,99	0,99	0,99	0,84	0,99	0,99	-1,26
Anteil > 15%	0,96	1,00	1,00	0,94	0,98	1,00	1,00	0,89	0,93	1,00	1,00	0,96	0,82	1,00	1,00	0,71
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,99	1,00	1,00	0,98	0,90	1,00	1,00	0,95	0,97	1,00	1,00	0,89	0,84	1,00	1,00	0,64

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Diagnose Spitzenstunde nachmittags
Signalisierungszustand 3 (typisch) mit Umlaufzeit 160 sek.

Form	blatt 3																		
	kt: enpunkt: bschnitt:															Stadt: Datum: Bearbeite	er:		
		t _∪ =	160	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q _s	q _{SM}	t _B	n _C	С	g	N_{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
В	X	1 G	60	0,375	100	611	27,2	1,3	2000	entf.	1,80	33,3	750,0	0,81	2,37	45	11	56	D D
D	X	1L _{frei} 2 G	20 65	0,125 0,406	140 95	122 427	5,4 19,0	0,0	2000 1800	entf. entf.	1,80 2,00	11,1 32,5	250,0 731,3	0,49	0,00	65 37	0	65 37	D C
D	X	2L _{frei}	25	0,156	135	138	6,1	8,0	1911	entf.	1,88	13,3	298,6	0,46	0,00	61	0	61	D
С	Χ	3 G	35	0,219	125	94	4,2	12,8	1756	entf.	2,05	17,1	384,1	0,24	0,00	52	0	52	D
С	Χ	3L _{frei}	30	0,188	130	345	15,3	2,3	1776	entf.	2,03	14,8	333,0	1,04	12,47	66	135	200	F
Α	Χ	4 G	20	0,125	140	187	8,3	0,5	2000	entf.	1,80	11,1	250,0	0,75	1,48	68	21	89	Е
Α	Х	4L _{frei}	9	0,056	151	36	1,6	2,8	2349	entf.	1,53	5,9	132,2	0,27	0,00	72	0	72	Е

Qualitätsstufe

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/R}$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	1,3	0,0	0,0	0,0	0,9	0,0	0,0	8,0	12,8	0,0	0,0	2,3	0,5	0,0	0,0	2,8
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,96	0,88	0,99	0,99	0,99	0,99	0,99	0,99	0,99
Anteil > 15%	0,98	1,00	1,00	1,00	0,99	1,00	1,00	0,89	0,84	1,00	1,00	0,97	0,99	1,00	1,00	0,96
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	1,00	0,90	1,00	1,00	0,96	0,88	1,00	1,00	0,89	1,00	1,00	1,00	0,89

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Diagnose Spitzenstunde nachmittags Signalisierungszustand 4 (typisch) mit Umlaufzeit 185 sek.

Form	blatt 3																		
	ekt: enpunkt: bschnitt:															Stadt: Datum: Bearbeit	er:		
t _U = 185 sek T = 3600 sek																			
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q _S	q _{SM}	t _B	n _C	С	g	N _{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
В	Х	1 G	63	0,341	122	611	31,4	1,3	2000	entf.	1,80	35,0	681,1	0,90	3,52	58	19	77	E
В	Х	$1L_{frei}$	26	0,141	159	122	6,3	0,0	2000	entf.	1,80	14,4	281,1	0,43	0,00	73	0	73	Е
D	Χ	2 G	74	0,400	111	427	21,9	0,9	1800	entf.	2,00	37,0	720,0	0,59	0,00	44	0	44	С
D	Х	$2L_{frei}$	40	0,216	145	138	7,1	8,0	1911	entf.	1,88	21,2	413,2	0,33	0,00	61	0	61	D
С	Χ	3 G	48	0,259	137	94	4,8	12,8	1756	entf.	2,05	23,4	455,6	0,21	0,00	54	0	54	D
С	Х	3L _{frei}	35	0,189	150	345	17,7	2,3	1776	entf.	2,03	17,3	336,0	1,03	11,28	75	121	196	F
Α	Χ	4 G	22	0,119	163	187	9,6	0,5	2000	entf.	1,80	12,2	237,8	0,79	2,05	79	31	110	F
A	Х	4L _{frei}	9	0,049	176	36	1,9	2,8	2349	entf.	1,53	5,9	114,3	0,31	0,00	85	0	85	E

Qualitätsstufe F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/}R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	1,3	0,0	0,0	0,0	0,9	0,0	0,0	8,0	12,8	0,0	0,0	2,3	0,5	0,0	0,0	2,8
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,96	0,88	0,99	0,99	0,99	0,99	0,99	0,99	0,99
Anteil > 15%	0,98	1,00	1,00	1,00	0,99	1,00	1,00	0,89	0,84	1,00	1,00	0,97	0,99	1,00	1,00	0,96
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	1,00	0,90	1,00	1,00	0,96	0,88	1,00	1,00	0,89	1,00	1,00	1,00	0,89

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 1 Spitzenstunde morgens
Signalisierungszustand 1 (typisch morgens) mit Umlaufzeit 135 sek.

Form	blatt 3									Kno	tenpunkt	mit Licht	tsignalanl	age					
		t _U =	135	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_S	q_{SM}	t_B	n _C	С	g	N_{GE}	w_l	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	45	0,333	90	457	17,1	3,1	1968	entf.	1,83	24,6	656,1	0,70	0,69	39	4	43	С
4	Χ	$1L_{frei}$	10	0,074	125	56	2,1	7,1	2312	entf.	1,56	6,4	171,2	0,33	0,00	59	0	59	D
2	Χ	2 G	60	0,444	75	672	25,2	2,1	1777	entf.	2,03	29,6	789,7	0,85	2,90	34	13	47	С
2	Χ	$2L_{frei}$	25	0,185	110	233	8,7	8,2	1907	entf.	1,89	13,2	353,2	0,66	0,15	51	1	53	D
3	Χ	3 G	25	0,185	110	184	6,9	7,1	1926	entf.	1,87	13,4	356,7	0,52	0,00	50	0	50	С
3	Χ	$3L_{frei}$	20	0,148	115	349	13,1	4,0	1765	entf.	2,04	9,8	261,5	1,33	43,73	61	602	663	F
1	Χ	4 G	20	0,148	115	84	3,2	10,7	1843	entf.	1,95	10,2	273,0	0,31	0,00	51	0	51	D
1	Х	$4L_{frei}$	9	0,067	126	13	0,5	38,5	1512	entf.	2,38	3,8	100,8	0,13	0,00	59	0	59	D

Qualitätsstufe

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/}R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	3,1	0,0	0,0	7,1	2,1	0,0	0,0	8,2	7,1	0,0	0,0	4,0	10,7	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,98	0,99	0,99	0,96	0,99	0,99	0,99	0,95	0,96	0,99	0,99	0,98	0,92	0,99	0,99	-25,94
Anteil > 15%	0,96	1,00	1,00	0,90	0,97	1,00	1,00	0,89	0,90	1,00	1,00	0,94	0,86	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,98	1,00	1,00	0,96	0,89	1,00	1,00	0,95	0,96	1,00	1,00	0,88	0,92	1,00	1,00	0,57

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 1 Spitzenstunde morgens
Signalisierungszustand 2 (typisch morgens) mit Umlaufzeit 160 sek.

Form	blatt 3																		
		t _∪ =	160	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_S	q _{SM}	t _B	n _C	С	g	N_{GE}	WI	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	60	0,375	100	457	20,3	3,1	1968	entf.	1,83	32,8	738,1	0,62	0,00	41	0	41	С
4	Χ	$1L_{frei}$	20	0,125	140	56	2,5	7,1	1926	entf.	1,87	10,7	240,8	0,23	0,00	63	0	63	D
2	Χ	2 G	70	0,438	90	672	29,9	2,1	1777	entf.	2,03	34,5	777,3	0,86	3,07	41	14	55	D
2	Χ	$2L_{frei}$	30	0,188	130	233	10,4	8,2	1907	entf.	1,89	15,9	357,6	0,65	0,02	60	0	60	D
3	Χ	3 G	30	0,188	130	184	8,2	7,1	1926	entf.	1,87	16,1	361,2	0,51	0,00	58	0	58	D
3	Χ	3L _{frei}	25	0,156	135	349	15,5	4,0	1765	entf.	2,04	12,3	275,8	1,27	36,58	71	477	548	F
1	Χ	4 G	20	0,125	140	84	3,7	10,7	1843	entf.	1,95	10,2	230,4	0,36	0,00	64	0	64	D
1	Х	$4L_{frei}$	9	0,056	151	13	0,6	38,5	1512	entf.	2,38	3,8	85,0	0,15	0,00	72	0	72	Е

Qualitätsstufe

F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/R}$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	3,1	0,0	0,0	7,1	2,1	0,0	0,0	8,2	7,1	0,0	0,0	4,0	10,7	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,98	0,99	0,99	0,96	0,99	0,99	0,99	0,95	0,96	0,99	0,99	0,98	0,92	0,99	0,99	-25,94
Anteil > 15%	0,96	1,00	1,00	0,90	0,97	1,00	1,00	0,89	0,90	1,00	1,00	0,94	0,86	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,98	1,00	1,00	0,96	0,89	1,00	1,00	0,95	0,96	1,00	1,00	0,88	0,92	1,00	1,00	0,57

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 1 Spitzenstunde nachmittags
Signalisierungszustand 3 (typisch) mit Umlaufzeit 160 sek.

Form	blatt 3																		
		t _∪ =	160	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_{S}	q _{SM}	t _B	n _C	С	g	N_{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	60	0,375	100	769	34,2	1,0	2000	entf.	1,80	33,3	750,0	1,03	19,74	51	95	146	F
4	Χ	$1L_{frei}$	20	0,125	140	104	4,6	0,0	2000	entf.	1,80	11,1	250,0	0,42	0,00	65	0	65	D
2	Χ	2 G	65	0,406	95	466	20,7	1,1	1800	entf.	2,00	32,5	731,3	0,64	0,00	38	0	38	С
2	Χ	$2L_{frei}$	25	0,156	135	162	7,2	6,2	1939	entf.	1,86	13,5	303,0	0,53	0,00	62	0	62	D
3	Х	3 G	35	0,219	125	96	4,3	4,2	1960	entf.	1,84	19,1	428,7	0,22	0,00	51	0	51	D
3	Χ	3L _{frei}	30	0,188	130	478	21,2	1,0	1800	entf.	2,00	15,0	337,5	1,42	70,25	72	749	821	F
1	Χ	4 G	20	0,125	140	127	5,6	2,4	1973	entf.	1,83	11,0	246,6	0,52	0,00	65	0	65	D
1	Х	4L _{frei}	9	0,056	151	23	1,0	4,3	2336	entf.	1,54	5,8	131,4	0,18	0,00	72	0	72	Е

Qualitätsstufe F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/}R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	1,0	0,0	0,0	0,0	1,1	0,0	0,0	6,2	4,2	0,0	0,0	1,0	2,4	0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,97	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,98
Anteil > 15%	0,99	1,00	1,00	1,00	0,98	1,00	1,00	0,91	0,94	1,00	1,00	0,99	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	1,00	0,90	1,00	1,00	0,97	0,98	1,00	1,00	0,90	0,99	1,00	1,00	0,88

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 1 Spitzenstunde nachmittags
Signalisierungszustand 4 (typisch) mit Umlaufzeit 185 sek.

Form	blatt 3																		
		t _∪ =	185	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q _S	q _{SM}	t _B	n _C	С	g	N _{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	63	0,341	122	769	39,5	1,0	2000	entf.	1,80	35,0	681,1	1,13	48,18	65	255	320	F
4	Χ	$1L_{frei}$	26	0,141	159	104	5,3	0,0	2000	entf.	1,80	14,4	281,1	0,37	0,00	72	0	72	E
2	Χ	2 G	74	0,400	111	466	23,9	1,1	1800	entf.	2,00	37,0	720,0	0,65	0,00	45	0	45	С
2	Χ	2L _{frei}	40	0,216	145	162	8,3	6,2	1939	entf.	1,86	21,5	419,2	0,39	0,00	62	0	62	D
3	Χ	3 G	48	0,259	137	96	4,9	4,2	1960	entf.	1,84	26,1	508,5	0,19	0,00	53	0	53	D
3	Χ	3L _{frei}	35	0,189	150	478	24,6	1,0	1800	entf.	2,00	17,5	340,5	1,40	68,73	83	727	809	F
1	Χ	4 G	22	0,119	163	127	6,5	2,4	1973	entf.	1,83	12,1	234,6	0,54	0,00	77	0	77	E
1	Χ	4L _{frei}	9	0,049	176	23	1,2	4,3	2336	entf.	1,54	5,8	113,7	0,20	0,00	85	0	85	Е

Qualitätsstufe

F

Fahrstreifen	1G	$1G_{/R}$	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/}R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	1,0	0,0	0,0	0,0	1,1	0,0	0,0	6,2	4,2	0,0	0,0	1,0	2,4	0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,97	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,98
Anteil > 15%	0,99	1,00	1,00	1,00	0,98	1,00	1,00	0,91	0,94	1,00	1,00	0,99	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	1,00	0,90	1,00	1,00	0,97	0,98	1,00	1,00	0,90	0,99	1,00	1,00	0,88

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 2 Spitzenstunde morgens
Signalisierungszustand 1 (typisch morgens) mit Umlaufzeit 135 sek.

Form	blatt 3									Kno	tenpunkt	mit Licht	tsignalanl	age					
		t _∪ =	135	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_{S}	q _{SM}	t_{B}	n _C	С	g	N_{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	45	0,333	90	483	18,1	4,3	1959	entf.	1,84	24,5	653,0	0,74	1,32	40	7	47	С
4	Χ	$1L_{frei}$	10	0,074	125	67	2,5	14,9	1945	entf.	1,85	5,4	144,1	0,47	0,00	60	0	60	D
2	Χ	2 G	60	0,444	75	720	27,0	2,1	1777	entf.	2,03	29,6	789,7	0,91	4,60	35	21	56	D
2	Χ	$2L_{frei}$	25	0,185	110	234	8,8	8,1	1909	entf.	1,89	13,3	353,5	0,66	0,18	51	2	53	D
3	Х	3 G	25	0,185	110	185	6,9	7,0	1928	entf.	1,87	13,4	357,0	0,52	0,00	50	0	50	С
3	Х	3L _{frei}	20	0,148	115	349	13,1	4,0	1765	entf.	2,04	9,8	261,5	1,33	43,73	61	602	663	F
1	Χ	4 G	20	0,148	115	86	3,2	10,5	1849	entf.	1,95	10,3	274,0	0,31	0,00	51	0	51	D
1	Х	4L _{frei}	9	0,067	126	13	0,5	38,5	1512	entf.	2,38	3,8	100,8	0,13	0,00	59	0	59	D

Qualitätsstufe F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/}R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	4,3	0,0	0,0	14,9	2,1	0,0	0,0	8,1	7,0	0,0	0,0	4,0	10,5	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,98	0,99	0,99	0,81	0,99	0,99	0,99	0,95	0,96	0,99	0,99	0,98	0,92	0,99	0,99	-25,94
Anteil > 15%	0,94	1,00	1,00	0,82	0,97	1,00	1,00	0,89	0,90	1,00	1,00	0,94	0,86	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,98	1,00	1,00	0,81	0,89	1,00	1,00	0,95	0,96	1,00	1,00	0,88	0,92	1,00	1,00	0,57

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 2 Spitzenstunde morgens
Signalisierungszustand 2 (typisch morgens) mit Umlaufzeit 160 sek.

Form	blatt 3																		
		t _∪ =	160	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_S	q _{SM}	t _B	n _C	С	g	N_{GE}	WI	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	60	0,375	100	483	21,5	4,3	1959	entf.	1,84	32,7	734,6	0,66	0,11	41	1	42	С
4	Χ	$1L_{frei}$	20	0,125	140	67	3,0	14,9	1621	entf.	2,22	9,0	202,6	0,33	0,00	64	0	64	D
2	Χ	2 G	70	0,438	90	720	32,0	2,1	1777	entf.	2,03	34,5	777,3	0,93	5,73	43	27	69	D
2	Χ	$2L_{frei}$	30	0,188	130	234	10,4	8,1	1909	entf.	1,89	15,9	357,9	0,65	0,06	60	1	61	D
3	Χ	3 G	30	0,188	130	185	8,2	7,0	1928	entf.	1,87	16,1	361,5	0,51	0,00	58	0	58	D
3	Χ	$3L_{frei}$	25	0,156	135	349	15,5	4,0	1765	entf.	2,04	12,3	275,8	1,27	36,58	71	477	548	F
1	Χ	4 G	20	0,125	140	86	3,8	10,5	1849	entf.	1,95	10,3	231,2	0,37	0,00	64	0	64	D
1	Х	$4L_{frei}$	9	0,056	151	13	0,6	38,5	1512	entf.	2,38	3,8	85,0	0,15	0,00	72	0	72	Е

Qualitätsstufe

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/R}$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	4,3	0,0	0,0	14,9	2,1	0,0	0,0	8,1	7,0	0,0	0,0	4,0	10,5	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,98	0,99	0,99	0,81	0,99	0,99	0,99	0,95	0,96	0,99	0,99	0,98	0,92	0,99	0,99	-25,94
Anteil > 15%	0,94	1,00	1,00	0,82	0,97	1,00	1,00	0,89	0,90	1,00	1,00	0,94	0,86	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,98	1,00	1,00	0,81	0,89	1,00	1,00	0,95	0,96	1,00	1,00	0,88	0,92	1,00	1,00	0,57

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 2 Spitzenstunde nachmittags
Signalisierungszustand 3 (typisch) mit Umlaufzeit 160 sek.

Forml	blatt 3																		
		t _U =	160	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t_{F}	f	t _S	q	m	SV	q_{S}	q_{SM}	t_B	n_{C}	С	g	N_{GE}	w_l	w_{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	60	0,375	100	813	36,1	1,5	2000	entf.	1,80	33,3	750,0	1,08	38,47	53	185	237	F
4	Χ	1L _{frei}	20	0,125	140	124	5,5	4,0	1962	entf.	1,84	10,9	245,2	0,51	0,00	65	0	65	D
2	Χ	2 G	65	0,406	95	499	22,2	1,2	1800	entf.	2,00	32,5	731,3	0,68	0,47	39	2	41	С
2	Χ	$2L_{frei}$	25	0,156	135	162	7,2	6,2	1939	entf.	1,86	13,5	303,0	0,53	0,00	62	0	62	D
3	Χ	3 G	35	0,219	125	97	4,3	4,2	1960	entf.	1,84	19,1	428,7	0,23	0,00	51	0	51	D
3	Χ	3L _{frei}	30	0,188	130	478	21,2	1,0	1800	entf.	2,00	15,0	337,5	1,42	70,25	72	749	821	F
1	Χ	4 G	20	0,125	140	130	5,8	2,3	1973	entf.	1,82	11,0	246,6	0,53	0,00	66	0	66	D
1	Х	4L _{frei}	9	0,056	151	23	1,0	4,3	2336	entf.	1,54	5,8	131,4	0,18	0,00	72	0	72	Е

Qualitätsstufe F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/}R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	4G _{/R}	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	1,5	0,0	0,0	4,0	1,2	0,0	0,0	6,2	4,2	0,0	0,0	1,0	2,3	0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,97	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,98
Anteil > 15%	0,98	1,00	1,00	0,94	0,98	1,00	1,00	0,91	0,94	1,00	1,00	0,99	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	0,98	0,90	1,00	1,00	0,97	0,98	1,00	1,00	0,90	0,99	1,00	1,00	0,88

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 2 Spitzenstunde nachmittags
Signalisierungszustand 4 (typisch) mit Umlaufzeit 185 sek.

Form	blatt 3																		
		t _∪ =	185	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t_F	f	t _S	q	m	SV	q_{S}	q_{SM}	t _B	n_{C}	С	g	N_{GE}	W_l	WII	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	63	0,341	122	813	41,8	1,5	2000	entf.	1,80	35,0	681,1	1,19	66,79	68	353	421	F
4	Χ	$1L_{frei}$	26	0,141	159	124	6,4	4,0	1962	entf.	1,84	14,2	275,7	0,45	0,00	73	0	73	E
2	Χ	2 G	74	0,400	111	499	25,6	1,2	1800	entf.	2,00	37,0	720,0	0,69	0,62	46	3	49	С
2	Χ	$2L_{frei}$	40	0,216	145	162	8,3	6,2	1939	entf.	1,86	21,5	419,2	0,39	0,00	62	0	62	D
3	Χ	3 G	48	0,259	137	97	5,0	4,2	1960	entf.	1,84	26,1	508,5	0,19	0,00	53	0	53	D
3	Χ	3L _{frei}	35	0,189	150	478	24,6	1,0	1800	entf.	2,00	17,5	340,5	1,40	68,73	83	727	809	F
1	Χ	4 G	22	0,119	163	130	6,7	2,3	1973	entf.	1,82	12,1	234,6	0,55	0,00	77	0	77	E
1	Χ	4L _{frei}	9	0,049	176	23	1,2	4,3	2336	entf.	1,54	5,8	113,7	0,20	0,00	85	0	85	Е

Qualitätsstufe

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/R}$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	1,5	0,0	0,0	4,0	1,2	0,0	0,0	6,2	4,2	0,0	0,0	1,0	2,3	0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,97	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,98
Anteil > 15%	0,98	1,00	1,00	0,94	0,98	1,00	1,00	0,91	0,94	1,00	1,00	0,99	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	0,98	0,90	1,00	1,00	0,97	0,98	1,00	1,00	0,90	0,99	1,00	1,00	0,88

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 3 Spitzenstunde morgens
Signalisierungszustand 1 (typisch morgens) mit Umlaufzeit 135 sek.

Form	blatt 3									Kno	tenpunkt	mit Licht	tsignalanl	age					
		t _∪ =	135	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_{S}	q _{SM}	t_{B}	n_{C}	С	g	N_{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	45	0,333	90	372	14,0	4,3	1959	entf.	1,84	24,5	653,0	0,57	0,00	37	0	37	С
4	Χ	$1L_{frei}$	10	0,074	125	70	2,6	12,9	2101	entf.	1,71	5,8	155,6	0,45	0,00	60	0	60	D
2	Χ	2 G	60	0,444	75	420	15,8	2,1	1777	entf.	2,03	29,6	789,7	0,53	0,00	27	0	27	В
2	Χ	$2L_{frei}$	25	0,185	110	125	4,7	8,0	1911	entf.	1,88	13,3	353,9	0,35	0,00	48	0	48	С
3	Χ	3 G	25	0,185	110	336	12,6	7,1	1926	entf.	1,87	13,4	356,7	0,94	5,57	54	56	111	F
3	Χ	3L _{frei}	20	0,148	115	306	11,5	4,2	1764	entf.	2,04	9,8	261,3	1,17	23,78	59	328	387	F
1	Χ	4 G	20	0,148	115	182	6,8	10,0	1864	entf.	1,93	10,4	276,2	0,66	0,13	54	2	56	D
1	Х	4L _{frei}	9	0,067	126	13	0,5	38,5	1512	entf.	2,38	3,8	100,8	0,13	0,00	59	0	59	D

Qualitätsstufe F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/}R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	4,3	0,0	0,0	12,9	2,1	0,0	0,0	8,0	7,1	0,0	0,0	4,2	10,0	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,98	0,99	0,99	0,88	0,99	0,99	0,99	0,96	0,96	0,99	0,99	0,98	0,93	0,99	0,99	-25,94
Anteil > 15%	0,94	1,00	1,00	0,84	0,97	1,00	1,00	0,89	0,90	1,00	1,00	0,94	0,87	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,98	1,00	1,00	0,88	0,89	1,00	1,00	0,96	0,96	1,00	1,00	0,88	0,93	1,00	1,00	0,57

Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 3 Spitzenstunde morgens Signalisierungszustand 2 (typisch morgens) mit Umlaufzeit 160 sek.

Form	blatt 3																		
		t _∪ =	160	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_{S}	q _{SM}	t _B	n _C	С	g	N_{GE}	WI	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	60	0,375	100	372	16,5	4,3	1959	entf.	1,84	32,7	734,6	0,51	0,00	39	0	39	С
4	Χ	$1L_{frei}$	20	0,125	140	70	3,1	12,9	1751	entf.	2,06	9,7	218,8	0,32	0,00	64	0	64	D
2	Χ	2 G	70	0,438	90	420	18,7	2,1	1777	entf.	2,03	34,5	777,3	0,54	0,00	33	0	33	В
2	Χ	$2L_{frei}$	30	0,188	130	125	5,6	8,0	1911	entf.	1,88	15,9	358,3	0,35	0,00	57	0	57	D
3	Χ	3 G	30	0,188	130	336	14,9	7,1	1926	entf.	1,87	16,1	361,2	0,93	5,03	64	50	114	F
3	Χ	$3L_{frei}$	25	0,156	135	306	13,6	4,2	1764	entf.	2,04	12,2	275,6	1,11	18,64	69	243	312	F
1	Χ	4 G	20	0,125	140	182	8,1	10,0	1864	entf.	1,93	10,4	233,1	0,78	1,97	68	30	98	Е
1	Х	$4L_{frei}$	9	0,056	151	13	0,6	38,5	1512	entf.	2,38	3,8	85,0	0,15	0,00	72	0	72	Е

Qualitätsstufe F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G}/R$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	4,3	0,0	0,0	12,9	2,1	0,0	0,0	8,0	7,1	0,0	0,0	4,2	10,0	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,98	0,99	0,99	0,88	0,99	0,99	0,99	0,96	0,96	0,99	0,99	0,98	0,93	0,99	0,99	-25,94
Anteil > 15%	0,94	1,00	1,00	0,84	0,97	1,00	1,00	0,89	0,90	1,00	1,00	0,94	0,87	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,98	1,00	1,00	0,88	0,89	1,00	1,00	0,96	0,96	1,00	1,00	0,88	0,93	1,00	1,00	0,57

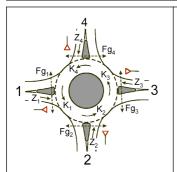
Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 3 Spitzenstunde nachmittags
Signalisierungszustand 3 (typisch) mit Umlaufzeit 160 sek.

Form	blatt 3																		
		t _∪ =	160	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_S	q _{SM}	t _B	n _C	С	g	N_{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	60	0,375	100	626	27,8	1,6	2000	entf.	1,80	33,3	750,0	0,83	2,65	45	13	58	D
4	Χ	$1L_{frei}$	20	0,125	140	131	5,8	3,1	1968	entf.	1,83	10,9	246,0	0,53	0,00	66	0	66	D
2	Χ	2 G	65	0,406	95	291	12,9	1,4	1800	entf.	2,00	32,5	731,3	0,40	0,00	34	0	34	В
2	Х	$2L_{frei}$	25	0,156	135	87	3,9	6,9	1929	entf.	1,87	13,4	301,5	0,29	0,00	60	0	60	D
3	Χ	3 G	35	0,219	125	176	7,8	4	1962	entf.	1,84	19,1	429,1	0,41	0,00	54	0	54	D
3	Х	3L _{frei}	30	0,188	130	419	18,6	9,6	1688	entf.	2,13	14,1	316,5	1,32	51,27	70	583	653	F
1	Χ	4 G	20	0,125	140	274	12,2	2,2	1974	entf.	1,82	11,0	246,7	1,11	16,91	71	247	318	F
1	Х	$4L_{frei}$	9	0,056	151	23	1,0	4,3	2336	entf.	1,54	5,8	131,4	0,18	0,00	72	0	72	Е

Qualitätsstufe F

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/R}$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	1,6	0,0	0,0	3,1	1,4	0,0	0,0	6,9	4,0	0,0	0,0	9,6	2,2	0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,96	0,98	0,99	0,99	0,94	0,99	0,99	0,99	0,98
Anteil > 15%	0,98	1,00	1,00	0,96	0,98	1,00	1,00	0,91	0,94	1,00	1,00	0,87	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	0,98	0,90	1,00	1,00	0,96	0,98	1,00	1,00	0,84	0,99	1,00	1,00	0,88


Nachweis der Qualität des Verkehrsablaufs im Kraftfahrzeugverkehr nach HBS Formblatt 3, eigene Darstellung

Prognosefall 3 Spitzenstunde nachmittags Signalisierungszustand 4 (typisch) mit Umlaufzeit 185 sek.

Form	blatt 3																		
		t _∪ =	185	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_S	q_{SM}	t _B	n_{C}	С	g	N_{GE}	w_l	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1 G	63	0,341	122	626	32,2	1,6	2000	entf.	1,80	35,0	681,1	0,92	4,98	59	26	85	E
4	Χ	$1L_{frei}$	26	0,141	159	131	6,7	3,1	1968	entf.	1,83	14,2	276,6	0,47	0,00	73	0	73	E
2	Χ	2 G	74	0,400	111	291	15,0	1,4	1800	entf.	2,00	37,0	720,0	0,40	0,00	40	0	40	С
2	Χ	$2L_{frei}$	40	0,216	145	87	4,5	6,9	1929	entf.	1,87	21,4	417,1	0,21	0,00	60	0	60	D
3	Χ	3 G	48	0,259	137	176	9,0	4	1962	entf.	1,84	26,2	508,9	0,35	0,00	56	0	56	D
3	Χ	3L _{frei}	35	0,189	150	419	21,5	9,6	1688	entf.	2,13	16,4	319,3	1,31	49,84	81	562	643	F
1	Χ	4 G	22	0,119	163	274	14,1	2,2	1974	entf.	1,82	12,1	234,7	1,17	21,12	83	324	407	F
1	X	4L _{frei}	9	0,049	176	23	1,2	4,3	2336	entf.	1,54	5,8	113,7	0,20	0,00	85	0	85	E

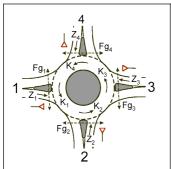
Qualitätsstufe

Fahrstreifen	1G	1G _{/R}	$1_{G/R}$	1L	2 G	$2G_{/R}$	$2_{G/R}$	2L	3 G	$3G_{/R}$	$3_{G/}R$	3L	4 G	$4G_{/R}$	$4_{G/}R$	4L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	1,6	0,0	0,0	3,1	1,4	0,0	0,0	6,9	4,0	0,0	0,0	9,6	2,2	0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,96	0,98	0,99	0,99	0,94	0,99	0,99	0,99	0,98
Anteil > 15%	0,98	1,00	1,00	0,96	0,98	1,00	1,00	0,91	0,94	1,00	1,00	0,87	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	0,98	0,90	1,00	1,00	0,96	0,98	1,00	1,00	0,84	0,99	1,00	1,00	0,88

Datei: KREISVERKEHR_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2	Zufahrt			Summe der Summe der	
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	90	113	15	-	-	218	646
2	238	0	0	674	-	-	912	179
3	188	234	0	228	-	-	650	927
4	73	361	51	0	-	-	485	660
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	-	-

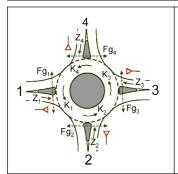
Geometrisone realisating angen									
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)						
			9						
K 53	1	Z ₁	1						
11.00	•	K ₁	2						
L 158 - Süd	2	Z ₂	1						
2 100 000	2	K ₂	2						
L 158 - Ost	3	Z ₃	1						
2 100 000	O	K ₃	2						
L 261	4	Z ₄	2						
L 201	7	K 4	2						
_	_	Z ₅	-						
-	-	K ₅	-						
_	_	Z ₆	-						
	-	K ₆	-						

Datei: KREISVERKEHR_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: 7-8 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken									
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	182	25	11	0	0	218	242	70
	K ₁	628	14	4	0	0	646	657	-
2	Z ₂	884	15	13	0	0	912	933	70
2	K ₂	157	17	5	0	0	179	193	-
3	Z ₃	633	8	9	0	0	650	663	70
J	K ₃	895	19	13	0	0	927	950	-
4	Z ₄	400	12	0	0	0	0	418	70
_	K ₄	624	16	20	0	0	660	688	=
5	Z ₅	-	-	-	-	-	-	-	-
5	K ₅	Ī	-	-	-	-	-	-	-
6	Z ₆	Ī	-	-	-	-	-	-	-
	K ₆	-	-	-	-	-	-	-	-

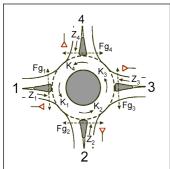
Bestimmung der Kapazität									
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität				
	q _{z,i} [Pkw-E/h]	q _{k,i} [Pkw-E/h]	G _i [Pkw-E/h]	für Fußgänger f _f [-]	C _i [Pkw-E/h]				
	(Sp. 16)	(Sp. 16)	(Abb. 7-17)	(Abb. 7-18a, 7-18b)	(Gl. 7-20)				
	18	19	20	21	22				
1	242	657	734	-	734				
2	933	193	1073	-	1073				
3	663	950	561	-	561				
4	418	688	1400	-	1400				
5	-	-	-	-	<u>-</u>				

	Beurteilung der Verkehrsqualität										
Zufahrt	Kapazitätsreserve R _i [Pkw-E/h] (Gl. 7-21)	\	Wartezeit v _i [s]), Tab. 7-1)	Vergleich mit der angestrebten Wartezeit w	Qualitätsstufe QSV [-]						
	23		24	25	26						
1	492		7	45	А						
2	140		23	45	С						
3	-102	-102 5		45	F						
4	982		4	45	A						
5	-	-		=	-						
6	-		-	-	-						
		Erreichbare Qualitätsstufe QSV _{ges}									

Datei: KREISVERKEHR_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2	Zufahrt			Summe der Summe der		
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}	
	1	2	3	4	5	6	7	8	
1	0	285	187	36	-	-	508	1078	
2	138	0	0	427	-	-	565	345	
3	94	345	0	73	-	-	512	601	
4	20	611	122	0	-	-	753	577	
-	-	-	-	-	-	-	-	-	
_	_	_	_	_	_	_	_	-	

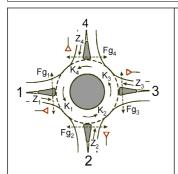
Geometrisone realisating angen									
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)						
			9						
K 53	1	Z ₁	1						
11.00	•	K ₁	2						
L 158 - Süd	2	Z ₂	1						
2 100 000	2	K ₂	2						
L 158 - Ost	3	Z ₃	1						
2 100 000	O	K ₃	2						
L 261	4	Z ₄	2						
L 201	7	K 4	2						
_	_	Z ₅	-						
-	-	K ₅	-						
_	_	Z ₆	-						
	-	K ₆	-						

Datei: KREISVERKEHR_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: 17-18 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken									
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	9Kr,i [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	492	8	8	0	0	508	521	20
	K ₁	1067	10	1	0	0	1078	1085	-
2	Z ₂	550	6	9	0	0	565	578	70
	K ₂	343	1	1	0	0	345	347	-
3	Z ₃	499	9	4	0	0	512	522	70
J	K ₃	585	6	10	0	0	601	615	-
4	Z ₄	727	5	1	0	0	0	737	20
-	K ₄	555	11	11	0	0	577	595	=
5	Z ₅	-	-	-	-	-	-	-	-
5	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	-	-	-	-	-	-	-	-
	K ₆	-			-	-	-	-	

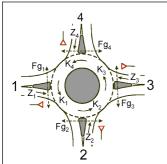
Bestimmung der Kapazität										
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität					
	q _{z,i} [Pkw-E/h] (Sp. 16)			für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)					
	18	19	20	21	22					
1	521	1085	491	-	491					
2	578	347	951	-	951					
3	522	615	761	-	761					
4	737	595	1518	-	1518					
5	-	-	-	-	-					
6	-	-	-	-	-					

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 -30 201 45 F 2 373 10 45 Α 3 239 15 45 В 4 781 5 45 Α 5 6 Erreichbare Qualitätsstufe QSV_{ges}

Datei: KREISVERKEHR_P1_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: Prognosefall 1: 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2	Zufahrt	Summe der	Summe der		
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	121	84	13	-	-	218	862
2	233	0	0	672	-	-	905	153
3	184	349	0	137	-	-	670	918
4	16	457	56	0	-	-	529	766
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	_	-

Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
K 53	1	Z ₁	1
11.00	'	K ₁	2
L 158 - Süd	2	Z ₂	1
2 100 Odd		K ₂	2
L 158 - Ost	3	Z ₃	1
L 130 - O3t	3	К3	2
L 261	4	Z ₄	2
L 201	T	K 4	2
	_	Z ₅	-
	_	K ₅	-
_	_	Z ₆	-
		K ₆	- -

Datei: KREISVERKEHR_P1_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

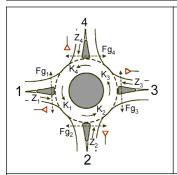
L261 / L158 / K53

Stunde: Prognosefall 1: 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken									
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	182	36	0	0	0	218	237	20
•	K ₁	830	32	0	0	0	862	878	-
2	Z ₂	872	33	0	0	0	905	922	70
	K ₂	135	18	0	0	0	153	163	-
3	Z ₃	641	29	0	0	0	670	685	70
	K ₃	880	38	0	0	0	918	938	-
4	Z ₄	495	18	0	0	0	0	522	20
٠,	K ₄	720	46	0	0	0	766	790	-
5	Z ₅	-	-	-	-	-	-	-	-
	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	-	-	-	-	-	-	-	-
3	K ₆	_	_	-	-	_	_	-	-


Bestimmung der Kapazität									
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität				
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)				
	18	19	20	21	22				
1	237	878	601	-	601				
2	922	163	1098	-	1098				
3	685	938	568	-	568				
4	522	790	1277	-	1277				
5	-	-	-	-	-				
6	_	_	_	_	_				

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 45 Α 364 10 2 176 19 45 В 625 F 3 -117 45 4 755 5 45 Α 5 6 Erreichbare Qualitätsstufe QSV_{ges}

Kreisel 7.1.10

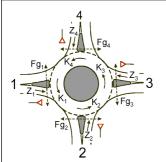
AB Stadtverkehr GbR

Bocholt

Datei: KREISVERKEHR_P1_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: Prognosefall 1: 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach Zufahrt				Summe der	Summe der	
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}	
	1	2	3	4	5	6	7	8	
1	0	277	127	23	-	-	427	1351	
2	162	0	0	466	-	-	628	254	
3	96	478	0	46	-	-	620	651	
4	4	769	104	0	-	-	877	736	
-	-	-	-	-	-	-	-	-	
_	_	_	_	_	_	_	_	-	

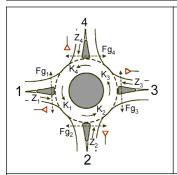
	-			
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)	
			9	
K 53	1	Z ₁	1	
11.00		K ₁	2	
L 158 - Süd	2	Z ₂	1	
2 100 000		K ₂	2	
L 158 - Ost	3	Z ₃	1	
2 100 000		К3	2	
L 261	4	Z ₄	2	
201	-	K 4	2	
_	_	Z ₅	-	
		K ₅	-	
_	_	Z ₆	-	
	-	К ₆	-	

Datei: KREISVERKEHR_P1_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 1: 17-18 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken									
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	412	15	0	0	0	427	436	20
•	K ₁	1338	13	0	0	0	1351	1358	-
2	Z ₂	613	15	0	0	0	628	636	70
	K ₂	250	4	0	0	0	254	257	-
3	Z ₃	610	10	0	0	0	620	626	70
<u> </u>	K ₃	635	16	0	0	0	651	660	=
4	Z ₄	865	8	0	0	0	0	877	20
٠,	K ₄	717	19	0	0	0	736	746	-
5	Z ₅	-	-	-	-	-	-	-	-
<u> </u>	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	=	=	-	-	-	-	-	-
3	K ₆	-	-	-	-	-	-	_	-

	Bestimmung der Kapazität									
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität					
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)					
	18	19	20	21	22					
1	436	1358	456	-	456					
2	636	257	1158	-	1158					
3	626	660	823	-	823					
4	877	746	873	-	873					
5	-	-	-	-	-					
6	-	-	-	-	-					

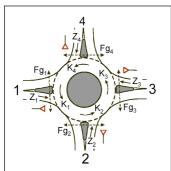
Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 20 45 Е 89 2 522 7 45 Α 3 197 18 45 В 4 -4 94 45 F 5 6 Erreichbare Qualitätsstufe QSV_{ges}

Datei: KREISVERKEHR_P2_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 2: 7-8 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Matrix der Ströme/Verkehrsstärken [Fz	z/h] - ohne Verkehr im Bypass
---------------------------------------	-------------------------------

			nach 2	Zufahrt	Summe der	Summe der		
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	122	86	13	-	-	221	899
2	234	0	0	720	-	-	954	166
3	185	349	0	189	-	-	723	967
4	27	483	67	0	-	-	577	768
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	_	_

	000	micurisone italiascamgangen	
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
K 53	1	Z ₁	1
11.00	•	K ₁	2
L 158 - Süd	2	Z ₂	1
2 100 000		K ₂	2
L 158 - Ost	3	Z ₃	1
2 100 000		K ₃	2
L 261	4	Z ₄	2
L 201	7	K 4	2
_	_	Z ₅	-
-	-	K ₅	-
_	_	Z ₆	-
	-	K ₆	-

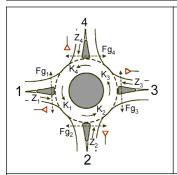
Datei: KREISVERKEHR_P2_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 2: 7-8 Uhr

Zielvorgaben:


Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken										
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]	
-	-	10	11	12	13	14	15	16	17	
1	Z ₁	185	36	0	0	0	221	240	20	
	K 1	854	45	0	0	0	899	922	-	
2	Z ₂	920	34	0	0	0	954	972	70	
2	K ₂	142	24	0	0	0	166	179	-	
3	Z ₃	690	33	0	0	0	723	740	70	
<u> </u>	K ₃	928	39	0	0	0	967	988	=	
4	Z ₄	519	31	0	0	0	0	566	20	
	K ₄	722	46	0	0	0	768	792	-	
5	Z ₅	-	-	-	-	-	-	-	-	
<u> </u>	K ₅	-	-	-	-	-	-	-	-	
6	Z ₆	-	-	-	-	-	-	-	-	
U	K 6	_	_	_	_	_	_	_	_	

Bestimmung der Kapazität									
Zufahrt	ufahrt Verkehrsstärken		Grundkapazität	Abminderungsfaktor	Kapazität				
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)				
	18	19	20	21	22				
1	240	922	659	-	659				
2	972	179	1237	-	1237				
3	740	988	623	-	623				
4	566	792	839	-	839				
5	-	-	-	-	-				
6	-	-	-	-	-				

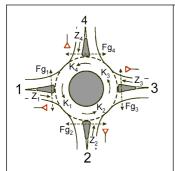
Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 419 9 45 Α 2 265 13 45 В 548 F 3 -117 45 4 273 13 45 В 5 6 Erreichbare Qualitätsstufe QSV_{ges}

AB	Stadtverkehr	GbR
----	--------------	------------

Datei: KREISVERKEHR_P2_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: Prognosefall 2: 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

	nach Zufahrt						Summe der Summe der		
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}	
	1	2	3	4	5	6	7	8	
1	0	278	130	23	-	-	431	1415	
2	162	0	0	499	-	-	661	277	
3	97	478	0	64	-	-	639	684	
4	7	813	124	0	-	-	944	737	
-	-	-	-	-	-	-	-	-	
_	_	_	_	_	_	_	_	-	

	-		
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
K 53	1	Z ₁	1
11.00		K ₁	2
L 158 - Süd	2	Z ₂	1
2 100 000		K ₂	2
L 158 - Ost	3	Z ₃	1
2 100 000		К3	2
L 261	4	Z ₄	2
201	-	K 4	2
_	_	Z ₅	-
		K ₅	-
_	_	Z ₆	-
	-	К ₆	-

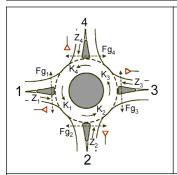
Datei: KREISVERKEHR_P2_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 2: 17-18 Uhr

Zielvorgaben:


Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken										
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]	
-	-	10	11	12	13	14	15	16	17	
1	Z ₁	416	15	0	0	0	431	440	20	
	K ₁	1393	22	0	0	0	1415	1427	-	
2	Z ₂	645	16	0	0	0	661	669	70	
	K ₂	268	9	0	0	0	277	283	-	
3	Z ₃	626	13	0	0	0	639	646	70	
	K ₃	667	17	0	0	0	684	693	-	
4	Z ₄	920	17	0	0	0	0	946	20	
7	K ₄	718	19	0	0	0	737	747	-	
5	Z ₅	-	-	-	-	-	-	-	=	
	K ₅	•	=	-	-	-	-	=	=	
6	Z ₆	ı	-	-	-	-	-	-	=	
0	K ₆	-	-	_	-	_	_	-	-	

Bestimmung der Kapazität									
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität				
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)				
	18	19	20	21	22				
1	440	1427	430	-	430				
2	669	283	1133	-	1133				
3	646	693	800	-	800				
4	946	747	872	-	872				
5	-	-	-	-	-				
6	-	-	-	-	-				

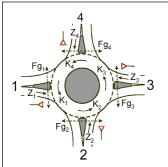
Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 -10 155 45 F 2 464 8 45 Α 3 154 22 45 С 4 -74 229 45 F 5 6 Erreichbare Qualitätsstufe QSVges

AB :	Stadtverkehr	GbR
------	--------------	------------

Datei: KREISVERKEHR_P3_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: Prognosefall 3: 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

	nach Zufahrt						Summe der	Summe der
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	66	182	13	-	-	261	748
2	125	0	0	420	-	-	545	265
3	336	306	0	189	-	-	831	558
4	40	372	70	0	-	-	482	767
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	-	-

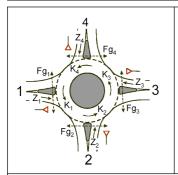
Comensone Randoungungen							
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)				
			9				
K 53	1	Z ₁	1				
11.00	•	K ₁	2				
L 158 - Süd	2	Z ₂	1				
L 100 - Oud	2	K ₂	2				
L 158 - Ost	3	Z ₃	1				
2 100 000	3	K ₃	2				
L 261	4	Z ₄	2				
L 201	7	K 4	2				
_	_	Z ₅	-				
-	-	K ₅	-				
_	_	Z ₆	-				
	-	K ₆	-				

Datei: KREISVERKEHR_P3_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 3: 7-8 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken										
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]	
-	-	10	11	12	13	14	15	16	17	
1	Z ₁	226	35	0	0	0	261	279	20	
	K ₁	710	38	0	0	0	748	768	-	
2	Z ₂	526	19	0	0	0	545	555	70	
	K ₂	233	32	0	0	0	265	282	-	
3	Z ₃	789	42	0	0	0	831	853	70	
J	K ₃	534	24	0	0	0	558	571	-	
4	Z ₄	417	25	0	0	0	0	455	20	
-	K ₄	720	47	0	0	0	767	791	=	
5	Z ₅	-	-	-	-	-	-	-	-	
3	K ₅	-	-	-	-	-	-	-	-	
6	Z ₆	-	-	-	-	-	-	-	-	
	K ₆	-	-	-	-	-	-	-		

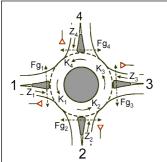
Bestimmung der Kapazität									
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität				
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)				
	18	19	20	21	22				
1	279	768	751	-	751				
2	555	282	1134	-	1134				
3	853	571	888	-	888				
4	455	791	840	-	840				
5	-	-	-	-	-				
6	-	-	-	-	-				

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 472 45 Α 8 2 579 6 45 Α Ε 3 35 58 45 4 385 9 45 Α 5 6 Е Erreichbare Qualitätsstufe QSV_{ges}

Datei: KREISVERKEHR_P3_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: Prognosefall 3: 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2	Zufahrt			Summe der	Summe der
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	150	274	23	-	-	447	1176
2	87	0	0	291	-	-	378	428
3	176	419	0	64	-	-	659	401
4	11	626	131	0	-	-	768	682
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-

	-		
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
K 53	1	Z ₁	1
11.00		K ₁	2
L 158 - Süd	2	Z ₂	1
L 100 - Odd		K ₂	2
L 158 - Ost	3	Z ₃	1
2 100 000		К3	2
L 261	4	Z ₄	2
201	-	K 4	2
_	_	Z ₅	-
		K ₅	-
_	_	Z ₆	-
	-	К ₆	-

Datei: KREISVERKEHR_P3_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 3: 17-18 Uhr

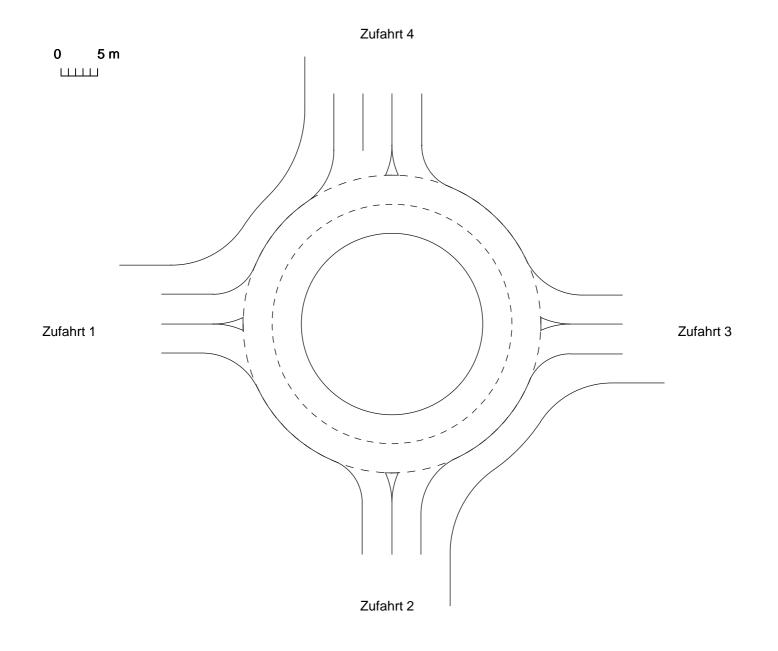
Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

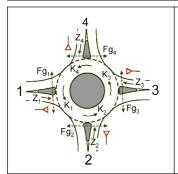
Verkehrsstärken										
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]	
-	-	10	11	12	13	14	15	16	17	
1	Z ₁	434	13	0	0	0	447	454	20	
· 	K ₁	1158	18	0	0	0	1176	1185	-	
2	Z ₂	368	10	0	0	0	378	383	70	
	K ₂	417	11	0	0	0	428	434	-	
3	Z ₃	645	14	0	0	0	659	667	70	
	K ₃	390	11	0	0	0	401	407	-	
4	Z ₄	743	14	0	0	0	0	764	20	
•	K4	665	17	0	0	0	682	691	-	
5	Z ₅	-	-	-	-	-	-	-	-	
	K ₅	-	-	-	-	-	-	-	-	
6	Z ₆	-	-	-	-	-	-	-	-	
J	K ₆	-	-	-	-	-	-	-	-	

Bestimmung der Kapazität								
Zufahrt	Verkehr	sstärken	Grundkapazität	Kapazität				
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)			
	18	19	20	21	22			
1	454	1185	528	-	528			
2	383	434	997	-	997			
3	667	407	1020	-	1020			
4	764	691	914	-	914			
5	-	-	-	-	-			
6	-	_	-	-	-			

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe QSV [-] R_i [Pkw-E/h] $w_i[s]$ angestrebten (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 74 42 45 D 2 614 6 45 Α 3 353 10 45 4 150 22 45 С 5 6 D Erreichbare Qualitätsstufe QSV_{ges}


AB Stadtverkehr G	bl	R
-------------------	----	---

Skizze der Kreis-Geometrie


KREISVERKEHR_7-8.KRS Datei: Projekt: Projekt-Nummer: Knoten: Verkehrsgutachten Meckenheim

L261 / L158 / K53

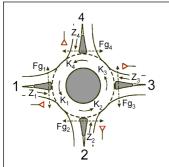
7-8 Uhr Stunde:

Zufahrt 1: K 53 Zufahrt 2: L 158 - Süd Zufahrt 3: L 158 - Ost Zufahrt 4: L 261

Datei: KREISVERKEHR_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2	Zufahrt			Summe der	Summe der		
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}		
	1	2	3	4	5	6	7	8		
1	0	90	113	15	-	-	218	646		
2	238	0	0	674	-	-	912	179		
3	188	234	0	0	-	-	422	927		
4	73	361	51	0	-	-	485	660		
-	-	-	-	-	-	-	-	-		
_	_	_	_	_	_	_	_	-		

	000	micurisone italiascamgangen	
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
K 53	1	Z ₁	1
11.00	•	K ₁	2
L 158 - Süd	2	Z ₂	1
2 100 000	2	K ₂	2
L 158 - Ost	3	Z ₃	1
2 100 000	O	K ₃	2
L 261	4	Z ₄	2
L 201	7	K 4	2
_	_	Z ₅	-
-	-	K ₅	-
_	_	Z ₆	-
	-	K ₆	-

Datei: KREISVERKEHR_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

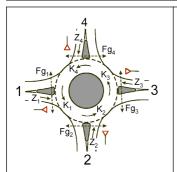
L261 / L158 / K53

Stunde: 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken									
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	182	25	11	0	0	218	242	20
·	K ₁	628	14	4	0	0	646	657	
2	Z ₂	884	15	13	0	0	912	933	70
<u>-</u>	K ₂	157	17	5	0	0	179	193	-
3	Z ₃	406	8	8	0	0	422	434	70
	K ₃	895	19	13	0	0	927	950	-
4	Z ₄	400	12	0	0	0	0	418	20
•	K ₄	624	16	20	0	0	660	688	-
5	Z ₅	-	-	-	-	-	-	-	-
	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	-	-	-	-	-	-	-	-
U	K ₆	-	-	-	-	-	-	-	-


Bestimmung der Kapazität								
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität			
	q _{z,i} [Pkw-E/h]	q _{k,i} [Pkw-E/h]	G _i [Pkw-E/h]	für Fußgänger f _f [-]	C _i [Pkw-E/h]			
	(Sp. 16)	(Sp. 16)	(Abb. 7-17)	(Abb. 7-18a, 7-18b)	(Gl. 7-20)			
	18	19	20	21	22			
1	242	657	734	-	734			
2	933	193	1073	-	1073			
3	434	950	561	-	561			
4	418	688	1400	-	1400			
5	-	-	-	-	-			
6	_	-	-	-	=			

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 7 45 Α 492 2 140 23 45 С 3 127 27 45 С 4 982 4 45 Α 5 6 С Erreichbare Qualitätsstufe QSV_{ges}

Kreisel 7.1.10

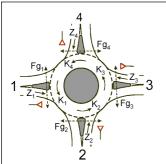
AB Stadtverkehr GbR

Bocholt

Datei: KREISVERKEHR_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2	Zufahrt			Summe der	Summe der
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	285	187	36	-	-	508	1078
2	138	0	0	427	-	-	565	345
3	94	345	0	0	-	-	439	601
4	20	611	122	0	-	-	753	577
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	_	-

	-		
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
K 53	1	Z ₁	1
11.00		K ₁	2
L 158 - Süd	2	Z ₂	1
2 100 000		K ₂	2
L 158 - Ost	3	Z ₃	1
2 100 000		К3	2
L 261	4	Z ₄	2
201	-	K 4	2
_	_	Z ₅	-
		K ₅	-
_	_	Z ₆	-
	-	К ₆	-

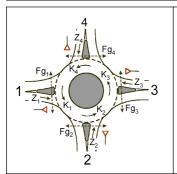
Datei: KREISVERKEHR_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: 17-18 Uhr

Zielvorgaben:


Mittlere Wartezeit w = 45 s Qualitätsstufe D

Verkehrsstärken									
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	492	8	8	0	0	508	521	20
•	K ₁	1067	10	1	0	0	1078	1085	-
2	Z ₂	550	6	9	0	0	565	578	70
	K ₂	343	1	1	0	0	345	347	=
3	Z ₃	428	8	3	0	0	439	447	70
	K ₃	585	6	10	0	0	601	615	-
4	Z ₄	727	5	1	0	0	0	737	20
٠,	K ₄	555	11	11	0	0	577	595	-
5	Z ₅	-	-	-	-	-	-	-	-
J	K ₅	ı.	=	-	-	-	-	-	=
6	Z ₆	ı	=	-	-	-	-	-	=
	K ₆	-	-	-	-	-	-	-	-

Bestimmung der Kapazität								
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität			
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)			
	18	19	20	21	22			
1	521	1085	491	-	491			
2	578	347	951	-	951			
3	447	615	761	-	761			
4	737	595	1518	-	1518			
5	-	-	-	-	-			
6	-	-	-	-	-			

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe QSV [-] R_i [Pkw-E/h] $w_i[s]$ angestrebten (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 -30 201 45 F 2 373 10 45 Α 45 3 314 11 В 4 781 5 45 Α 5 6 F Erreichbare Qualitätsstufe QSV_{ges}

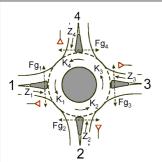
AB S	Stadtve	rkehr	GbR
------	---------	-------	-----

Datei: KREISVERKEHR_P1_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 1: 7-8 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

Matrix der Ströme/Verkehrsstärken [Fz	z/h] - ohne Verkehr im Bypass
---------------------------------------	-------------------------------

			nach 2	Zufahrt			Summe der	Summe der
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	121	84	13	-	-	218	862
2	233	0	0	672	-	-	905	153
3	184	349	0	0	-	-	533	918
4	16	457	56	0	-	-	529	766
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	_	-

Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
K 53	1	Z ₁	1
11.00	'	K ₁	2
L 158 - Süd	2	Z ₂	1
2 100 Odd		K ₂	2
L 158 - Ost	3	Z ₃	1
L 130 - O3t	3	К3	2
L 261	4	Z ₄	2
L 201	T	K 4	2
	_	Z ₅	-
	_	K ₅	-
_	_	Z ₆	-
		K ₆	- -

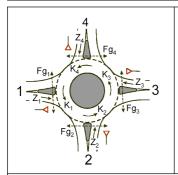
Datei: KREISVERKEHR_P1_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 1: 7-8 Uhr

Zielvorgaben:


Mittlere Wartezeit w = 45 s Qualitätsstufe D

				Verkeh	rsstärken				
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	182	36	0	0	0	218	237	20
	K ₁	830	32	0	0	0	862	878	-
2	Z ₂	872	33	0	0	0	905	922	70
	K ₂	135	18	0	0	0	153	163	-
3	Z ₃	506	27	0	0	0	533	547	70
	K ₃	880	38	0	0	0	918	938	-
4	Z ₄	495	18	0	0	0	0	522	20
	K4	720	46	0	0	0	766	790	-
5	Z ₅	-	-	-	-	-	-	-	-
	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	-	-	-	-	-	-	-	-
3	K ₆	-	-	-	-	-	_	_	-

Bestimmung der Kapazität						
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität	
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)	
	18	19	20	21	22	
1	237	878	601	-	601	
2	922	163	1098	-	1098	
3	547	938	568	-	568	
4	522	790	1277	-	1277	
5	-	-	-	-	-	
6	-	-	-	-	-	

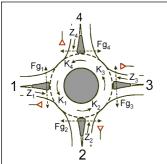
Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe QSV [-] R_i [Pkw-E/h] $w_i[s]$ angestrebten (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 364 10 45 Α 2 176 19 45 В Е 3 21 81 45 4 755 5 45 Α 5 6 Е Erreichbare Qualitätsstufe QSV_{ges}

AB :	Stadtverkehr	GbR
------	--------------	------------

Datei: KREISVERKEHR_P1_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53


Stunde: Prognosefall 1: 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

		nach Zufahrt					Summe der	Summe der
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	277	127	23	-	-	427	1351
2	162	0	0	466	-	-	628	254
3	96	478	0	0	-	-	574	651
4	4	769	104	0	-	-	877	736
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	_	-

	-			
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)	
			9	
K 53	1	Z ₁	1	
11.00		K ₁	2	
L 158 - Süd	2	Z ₂	1	
2 100 000		K ₂	2	
L 158 - Ost	3	Z ₃	1	
2 100 000		К3	2	
L 261	4	Z ₄	2	
201	-	K 4	2	
_	_	Z ₅	-	
	_	K ₅	-	
_	_	Z ₆	-	
	-	К ₆	-	

Datei: KREISVERKEHR_P1_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

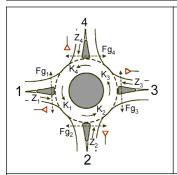
L261 / L158 / K53

Stunde: Prognosefall 1: 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

				Verkeh	rsstärken				
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	412	15	0	0	0	427	436	20
•	K ₁	1338	13	0	0	0	1351	1358	-
2	Z ₂	613	15	0	0	0	628	636	70
2	K ₂	250	4	0	0	0	254	257	-
3	Z ₃	565	9	0	0	0	574	579	70
3	K ₃	635	16	0	0	0	651	660	-
4	Z ₄	865	8	0	0	0	0	877	20
-	K 4	717	19	0	0	0	736	746	-
5	Z ₅	-	-	-	-	-	-	-	-
S	K ₅	-	=	-	-	-	-	-	-
6	Z ₆	-	=	-	-	-	-	-	-
0	K ₆	-	-	-	-	-	-	-	-


	Bestimmung der Kapazität								
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität				
	q _{z,i} [Pkw-E/h]	q _{k,i} [Pkw-E/h]	G _i [Pkw-E/h]	für Fußgänger f _f [-]	C _i [Pkw-E/h]				
	(Sp. 16)	(Sp. 16)	(Abb. 7-17)	(Abb. 7-18a, 7-18b)	(Gl. 7-20)				
	18	19	20	21	22				
1	436	1358	456	-	456				
2	636	257	1158	-	1158				
3	579	660	823	-	823				
4	877	746	873	-	873				
5	-	-	-	-	-				

		Beurteilung	g der Verkehrso	qualität	
Zufahrt	Kapazitätsreserve R _i [Pkw-E/h] (Gl. 7-21)	mittlere Wartezeit w _i [s] (Abb. 7-19, Tab. 7-1)		Vergleich mit der angestrebten Wartezeit w	Qualitätsstufe QSV [-]
	23	24	4	25	26
1	20	89	9	45	Е
2	522	7		45	A
3	244	14	4	45	В
4	-4	94	4	45	F
5	-	-		-	-
6	-	-		-	-
		Erreichbare Qual	itätsstufe QSV _{ge}	es	F

Kreisel 7.1.10

AB Stadtverkehr GbR

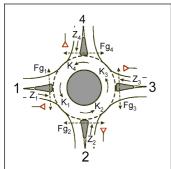
Bocholt

Datei: KREISVERKEHR_P2_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 2: 7-8 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2	Zufahrt			Summe der	Summe der
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	122	86	13	-	-	221	899
2	234	0	0	720	-	-	954	166
3	185	349	0	0	-	-	534	967
4	27	483	67	0	-	-	577	768
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	_	-

Geometrische Randbedingungen

Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)	
			9	
K 53	1	Z ₁	1	
11 00	•	K ₁	2	
L 158 - Süd	2	Z ₂	1	
2 100 000		K ₂	2	
L 158 - Ost	3	Z ₃	1	
2 100 000		К3	2	
L 261	4	Z ₄	2	
L 201	-	K 4	2	
_	_	Z ₅	-	
	_	K ₅	-	
_	_	Z ₆	-	
	-	K ₆	<u>-</u>	

Datei: KREISVERKEHR_P2_7-8.KRS

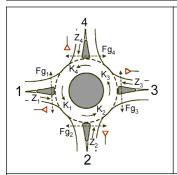
Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 2: 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D


	Verkehrsstärken								
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	185	36	0	0	0	221	240	20
	K ₁	854	45	0	0	0	899	922	-
2	Z ₂	920	34	0	0	0	954	972	70
	K ₂	142	24	0	0	0	166	179	-
3	Z ₃	507	27	0	0	0	534	548	70
J	K ₃	928	39	0	0	0	967	988	-
4	Z ₄	519	31	0	0	0	0	566	20
-	K ₄	722	46	0	0	0	768	792	=
5	Z ₅	-	-	-	-	-	-	-	-
3	K ₅	Ī	-	-	-	-	-	-	-
6	Z ₆	Ī	-	-	-	-	-	-	-
	K ₆	-	-	-	-	-	-	-	

	Bestimmung der Kapazität								
Zufahrt	Zufahrt Verkehrsstärken		tärken Grundkapazität		Kapazität				
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)				
	18	19	20	21	22				
1	240	922	659	-	659				
2	972	179	1237	-	1237				
3	548	988	623	-	623				
4	566	792	839	-	839				
5	-	-	-	-	-				
6	-	-	-	-	-				

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 419 9 45 Α 2 265 13 45 В 3 75 41 45 D 4 273 13 45 В 5 6 D Erreichbare Qualitätsstufe QSVges

Kreisel 7.1.10

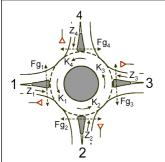
AB :	Stadtverkehr	GbR
------	--------------	------------

Datei: KREISVERKEHR_P2_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 2: 17-18 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2		Summe der	Summe der		
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	278	130	23	-	-	431	1415
2	162	0	0	499	-	-	661	277
3	97	478	0	0	-	-	575	684
4	7	813	124	0	-	-	944	737
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	_	_

Geometrische Randbedingungen

	000	micurisone italiascamgangen		
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)	
			9	
K 53	1	Z ₁	1	
11.00	•	K ₁	2	
L 158 - Süd	2	Z ₂	1	
2 100 000	2	K ₂	2	
L 158 - Ost	3	Z ₃	1	
2 100 000	O	K ₃	2	
L 261	4	Z ₄	2	
L 201	7	K 4	2	
_	_	Z ₅	-	
-	-	K ₅	-	
_	_	Z ₆	-	
	-	K ₆	-	

Datei: KREISVERKEHR_P2_17-18.KRS

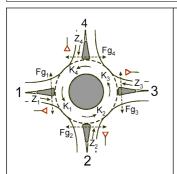
Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 2: 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D


Verkehrsstärken									
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	416	15	0	0	0	431	440	20
•	K ₁	1393	22	0	0	0	1415	1427	-
2	Z ₂	645	16	0	0	0	661	669	70
_	K ₂	268	9	0	0	0	277	283	-
3	Z ₃	566	9	0	0	0	575	580	70
	K ₃	667	17	0	0	0	684	693	-
4	Z ₄	920	17	0	0	0	0	946	20
٠,	K ₄	718	19	0	0	0	737	747	-
5	Z ₅	-	-	-	-	-	-	-	-
<u> </u>	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	=	=	-	-	-	-	-	-
3	K ₆	-	-	-	-	-	_	_	-

Bestimmung der Kapazität								
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität			
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)			
	18	19	20	21	22			
1	440	1427	430	-	430			
2	669	283	1133	-	1133			
3	580	693	800	-	800			
4	946	747	872	-	872			
5	-	-	-	-	-			
6	-	-	-	-	-			

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 -10 155 45 F 2 464 8 45 Α 3 220 16 45 В 4 -74 229 45 F 5 6 Erreichbare Qualitätsstufe QSV_{ges}

Kreisel 7.1.10

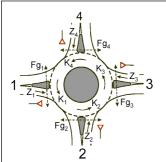
AB S	Stadtve	rkehr	GbR
------	---------	-------	-----

Datei: KREISVERKEHR_P3_7-8.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 3: 7-8 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2	Zufahrt			Summe der	Summe der
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	66	182	13	-	-	261	748
2	125	0	0	420	-	-	545	265
3	336	306	0	0	-	-	642	558
4	40	372	70	0	-	-	482	767
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	_	-

Geometrische Randbedingungen

	-		
Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
K 53	1	Z ₁	1
11.00		K ₁	2
L 158 - Süd	2	Z ₂	1
2 100 000		K ₂	2
L 158 - Ost	3	Z ₃	1
2 100 000		К3	2
L 261	4	Z ₄	2
201	-	K 4	2
_	_	Z ₅	-
		K ₅	-
_	_	Z ₆	-
	-	К ₆	-

Datei: KREISVERKEHR_P3_7-8.KRS

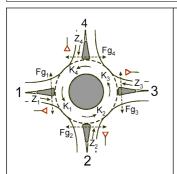
Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 3: 7-8 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D


Verkehrsstärken									
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	226	35	0	0	0	261	279	20
•	K ₁	710	38	0	0	0	748	768	-
2	Z ₂	526	19	0	0	0	545	555	70
	K ₂	233	32	0	0	0	265	282	-
3	Z ₃	605	37	0	0	0	642	661	70
	K ₃	534	24	0	0	0	558	571	-
4	Z ₄	417	25	0	0	0	0	455	20
	K4	720	47	0	0	0	767	791	-
5	Z ₅	-	-	-	-	-	-	-	-
	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	-	-	-	-	-	-	-	-
3	K ₆	-	-		-	-	-	-	-

Bestimmung der Kapazität								
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität			
	q _{z,i} [Pkw-E/h]	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)			
	(Sp. 16)	(Эр. 10)	(ADD. 7-17)	(ADD. 7-10a, 7-10b)	(OI. 1-20)			
	18	19	20	21	22			
1	279	768	751	-	751			
2	555	282	1134	-	1134			
3	661	571	888	-	888			
4	455	791	840	-	840			
5	-	-	-	-	-			
6	-	-	-	_	-			

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe QSV [-] R_i [Pkw-E/h] $w_i[s]$ angestrebten (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 472 45 Α 8 2 579 6 45 Α 45 3 227 15 В 4 385 9 45 Α 5 6 В Erreichbare Qualitätsstufe QSV_{ges}

Kreisel 7.1.10

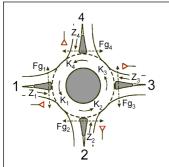
AB Stadtverkehr G	bl	R
-------------------	----	---

Datei: KREISVERKEHR_P3_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 3: 17-18 Uhr


Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

			nach 2	Zufahrt			Summe der	Summe der
von Zufahrt	1	2	3	4	5	6	Verkehrsstärken in der Zufahrt q _{z,i}	Verkehrsstärken im Kreis q _{k,i}
	1	2	3	4	5	6	7	8
1	0	150	274	23	-	-	447	1176
2	87	0	0	291	-	-	378	428
3	176	419	0	0	-	-	595	401
4	11	626	131	0	-	-	768	682
-	-	-	-	-	-	-	-	-
_	_	_	_	_	_	_	_	-

Geometrische Randbedingungen

Zufahrt (Straßenname)	Zufahrt-Nr.	Verkehrsstrom (Z=Zufahrt, K=Kreis)	Anzahl der Fahrstreifen (1/2/3)
			9
K 53	1	Z ₁	1
K 33	'	K ₁	2
L 158 - Süd	2	Z ₂	1
L 130 - Oud		K ₂	2
L 158 - Ost	3	Z ₃	1
L 130 - O3t	3	К3	2
L 261	4	Z ₄	2
L 201	T	K 4	2
	_	Z ₅	-
	_	K ₅	-
_	_	Z ₆	-
		K ₆	- -

Datei: KREISVERKEHR_P3_17-18.KRS

Kreisverkehrsplatz: Verkehrsgutachten Meckenheim ()

L261 / L158 / K53

Stunde: Prognosefall 3: 17-18 Uhr

Zielvorgaben:

Mittlere Wartezeit w = 45 s Qualitätsstufe D

				Verkeh	rsstärken				
Zufahrt -	Verkehrs- strom	q _{Pkw,i} [Pkw/h]	q _{Lkw,i} [Lkw/h]	q _{Lz,i} [Lz/h]	q _{Kr,i} [Kr/h]	q _{Rad,i} [Rad/h]	q _{Fz,i} [Fz/h]	q _{PE,i} [Pkw-E/h]	q _{Fg,i} [Fg/h]
-	-	10	11	12	13	14	15	16	17
1	Z ₁	434	13	0	0	0	447	454	20
	K ₁	1158	18	0	0	0	1176	1185	-
2	Z ₂	368	10	0	0	0	378	383	70
	K ₂	417	11	0	0	0	428	434	-
3	Z ₃	584	11	0	0	0	595	601	70
J	K ₃	390	11	0	0	0	401	407	-
4	Z ₄	743	14	0	0	0	0	764	20
_	K ₄	665	17	0	0	0	682	691	=
5	Z ₅	-	-	-	-	-	-	-	-
3	K ₅	-	-	-	-	-	-	-	-
6	Z ₆	-	-	-	-	-	-	-	-
	K ₆	-	-	-	-	-	-	-	

		Bestim	mung der Kapazität		
Zufahrt	Verkehr	sstärken	Grundkapazität	Abminderungsfaktor	Kapazität
	q _{z,i} [Pkw-E/h] (Sp. 16)	q _{k,i} [Pkw-E/h] (Sp. 16)	G _i [Pkw-E/h] (Abb. 7-17)	für Fußgänger f _f [-] (Abb. 7-18a, 7-18b)	C _i [Pkw-E/h] (Gl. 7-20)
	18	19	20	21	22
1	454	1185	528	-	528
2	383	434	997	-	997
3	601	407	1020	-	1020
4	764	691	914	-	914
5	-	-	-	-	-
6	-	-	-	-	-

Beurteilung der Verkehrsqualität Zufahrt Kapazitätsreserve mittlere Wartezeit Vergleich mit der Qualitätsstufe R_i [Pkw-E/h] $w_i[s]$ angestrebten QSV [-] (Gl. 7-21) (Abb. 7-19, Tab. 7-1) Wartezeit w 23 24 25 26 74 45 D 42 2 614 6 45 Α 3 419 9 45 4 150 22 45 С 5 6 D Erreichbare Qualitätsstufe QSV_{ges}

Kreisel 7.1.10

AB Stadtverkehr GbR

Bocholt

Skizze der Kreis-Geometrie

KREISVERKEHR_7-8.KRS Verkehrsgutachten Meckenheim Datei: Projekt: Projekt-Nummer: Knoten:

L261 / L158 / K53

7-8 Uhr Stunde:

Zufahrt 4 5 m шш Zufahrt 1 Zufahrt 3

Zufahrt 2

Zufahrt 1: K 53 Zufahrt 2: L 158 - Süd Zufahrt 3: L 158 - Ost Zufahrt 4: L 261

Diagnose mit Knotenumbau - Spitzenstunde morgens Signalisierungszustand mit Umlaufzeit 90 sek.

- K 53 Lüftelberger Straße
- L 158 Bonner Straße 2
- 3 L 158 Gudenauer Allee
- L 261 Meckenheimer Allee

Form	blatt 3									Kno	tenpunkt	mit Licht	signalanl	age					
		t _U =	90	sek	T =	3600	sek												
																			•
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_s	q_{SM}	t _B	n _c	С	g	N_{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	X	1a G	17	0,189	73	181	4,5	0,0	2000	entf.	1,80	9,4	377,8	0,48	0,00	33	0	33	В
4	X	1b G	17	0,189	73	180	4,5	5,6	1946	entf.	1,85	9,2	367,6	0,49	0,00	33	0	33	В
4	X	1a L _{ges}	5	0,056	85	51	1,3	3,9	2944	entf.	1,22	4,1	163,5	0,31	0,00	41	0	41	С
2	X	2a G	40	0,444	50	674	16,9	1,2	1800	entf.	2,00	20,0	800,0	0,84	2,84	22	13	35	В
2	X	2a L _{ges}	19	0,211	71	238	6,0	8,4	1903	entf.	1,89	10,0	401,8	0,59	0,00	32	0	32	В
3	Χ	3a G	19	0,211	71	188	4,7	5,3	1949	entf.	1,85	10,3	411,6	0,46	0,00	31	0	31	В
3	X	3a L _{ges}	13	0,144	77	117	2,9	0,0	1800	entf.	2,00	6,5	260,0	0,45	0,00	35	0	35	В
3	Х	3b L _{ges}	13	0,144	77	117	2,9	5,2	1755	entf.	2,05	6,3	253,6	0,46	0,00	35	0	35	В
1	Х	4a G	13	0,144	77	113	2,8	14,2	1673	entf.	2,15	6,0	241,6	0,47	0,00	35	0	35	В
1	Х	4a L _{ges}	6	0,067	84	15	0,4	26,7	1928	entf.	1,87	3,2	128,5	0,12	0,00	40	0	40	С

Qualitätsstufe C

1. Fahrstreifen	1a G	1G _{/R}	$1_{G/R}$	1a L	2a G	2G _{/R}	2 _{G/} R	2a L	3a G	3G _{/R}	$3_{G}/R$	3a L	4a G	4G _{/R}	4 _{G/} R	4a L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	0,0	0,0	0,0	3,9	1,2	0,0	0,0	8,4	5,3	0,0	0,0	0,0	14,2	0,0	0,0	26,7
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,95	0,97	0,99	0,99	0,99	0,84	0,99	0,99	-1,26
Anteil > 15%	1,00	1,00	1,00	0,94	0,98	1,00	1,00	0,89	0,93	1,00	1,00	1,00	0,82	1,00	1,00	0,71
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1.00	1.00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
ruisgangei vei keni	1,00	1,00	-,													
Angleichungsfaktor	1,00	1,00	1,00	0,98	0,90	1,00	1,00	0,95	0,97	1,00	1,00	0,90	0,84	1,00	1,00	0,64
		1,00	1,00	0,98	0,90	1,00	1,00	0,95	0,97	1,00	1,00	0,90	0,84	1,00	1,00	0,64
		1,00 1G _{/R}	1,00	0,98	0,90 2b G	1,00 2G _{/R}	1,00 2 _{G/} R	0,95 2b L	0,97 3b G	1,00 3G _{/R}	1,00 3 _{G/} R	0,90 3b L	0,84 4b G	1,00 4G _{/R}	1,00 4 _{G/} R	0,64 4b L
Angleichungsfaktor	1,00	1,00 1G _{/R}	1,00 1 _{G/} R		,	1,00 2G _{/R}	1,00 2 _{G/} R	,	,	1,00 3G _{/R}	1,00 3 _{G/} R		Ť	1,00 4G _{/R}	1,00 4 _{G/} R	· ·
Angleichungsfaktor 2. Fahrstreifen	1,00	1,00 1G _{/R}	1,00 1 _{G/} R 0,0		,	1,00 2G _{/R}	1,00 2 _{G/} R 0,0	,	,	1,00 3G _{/R}	3 _{G/} R		Ť	1,00 4G _{/R}	1,00 4 _{G/} R 0,0	· ·
Angleichungsfaktor 2. Fahrstreifen Schwerverkehrsanteil	1,00 1b G			1b L	2b G			2b L	3b G	713		3b L	4b G			4b L
Angleichungsfaktor 2. Fahrstreifen Schwerverkehrsanteil in Abhängigkeit von SV [%]	1,00 1b G 5,6	0,0	0,0	1b L 3,9	2b G	0,0	0,0	2b L 8,4	3b G 5,3	0,0	0,0	3b L	4b G	0,0	0,0	4b L
Angleichungsfaktor 2. Fahrstreifen Schwerverkehrsanteil in Abhängigkeit von SV [%] Anrteil < 2%	1,00 1b G 5,6 1,00	0,0	0,0 1,00	1b L 3,9 1,00	2b G 1,2 1,00	0,0	0,0	2b L 8,4 1,00	3b G 5,3 1,00	0,0	0,0 1,00	3b L 5,2 1,00	4b G 14,2 1,00	0,0	0,0	4b L 26,7 1,00
Angleichungsfaktor 2. Fahrstreifen Schwerverkehrsanteil in Abhängigkeit von SV [%] Anrteil 2 2% Anteil 2 bis 15%	1,00 1b G 5,6 1,00 0,97	0,0 1,00 0,99	0,0 1,00 0,99	1b L 3,9 1,00 0,98	2b G 1,2 1,00 0,99	0,0 1,00 0,99	0,0 1,00 0,99	2b L 8,4 1,00 0,95	3b G 5,3 1,00 0,97	0,0 1,00 0,99	0,0 1,00 0,99	3b L 5,2 1,00 0,98	4b G 14,2 1,00 0,84	0,0 1,00 0,99	0,0 1,00 0,99	4b L 26,7 1,00 -1,26
Angleichungsfaktor 2. Fahrstreifen Schwerverkehrsanteil in Abhängigkeit von SV [%] Anrteil < 2% Anteil > 15% Anteil > 15%	1,00 1b G 5,6 1,00 0,97 0,92	0,0 1,00 0,99 1,00	0,0 1,00 0,99	1b L 3,9 1,00 0,98	2b G 1,2 1,00 0,99 0,98	0,0 1,00 0,99 1,00	0,0 1,00 0,99	2b L 8,4 1,00 0,95	3b G 5,3 1,00 0,97	0,0 1,00 0,99 1,00	0,0 1,00 0,99 1,00	3b L 5,2 1,00 0,98 0,93	4b G 14,2 1,00 0,84 0,82	0,0 1,00 0,99 1,00	0,0 1,00 0,99 1,00	4b L 26,7 1,00 -1,26 0,71
Angleichungsfaktor 2. Fahrstreifen Schwerverkehrsanteil in Abhängigkeit von SV [%] Anrteil < 2% Anteil < 5 bis 15% Anteil > 15% Fahrstreifenbreite	1,00 1b G 5,6 1,00 0,97 0,92 1,00	0,0 1,00 0,99 1,00	0,0 1,00 0,99	1b L 3,9 1,00 0,98	2b G 1,2 1,00 0,99 0,98	0,0 1,00 0,99 1,00	0,0 1,00 0,99	2b L 8,4 1,00 0,95	3b G 5,3 1,00 0,97	0,0 1,00 0,99 1,00	0,0 1,00 0,99 1,00	3b L 5,2 1,00 0,98 0,93 1,00	4b G 14,2 1,00 0,84 0,82 1,00	0,0 1,00 0,99 1,00	0,0 1,00 0,99 1,00	4b L 26,7 1,00 -1,26 0,71
Angleichungsfaktor 2. Fahrstreifen Schwerverkehrsanteil in Abhängigkeit von SV [%] Anrteil < 2% Anteil 2 bis 15% Anteil > 15% Fahrstreifenbreite Abbiegeradius	1,00 1b G 5,6 1,00 0,97 0,92 1,00 1,00	0,0 1,00 0,99 1,00 1,00	0,0 1,00 0,99	1b L 3,9 1,00 0,98	2b G 1,2 1,00 0,99 0,98	0,0 1,00 0,99 1,00	0,0 1,00 0,99	2b L 8,4 1,00 0,95	3b G 5,3 1,00 0,97	0,0 1,00 0,99 1,00	0,0 1,00 0,99 1,00	3b L 5,2 1,00 0,98 0,93 1,00 0,90	4b G 14,2 1,00 0,84 0,82 1,00	0,0 1,00 0,99 1,00 1,00	0,0 1,00 0,99 1,00	4b L 26,7 1,00 -1,26 0,71

Diagnose mit Knotenumbau - Spitzenstunde nachmittags Signalisierungszustand mit Umlaufzeit 100 sek.

Zuf.

- 1 K 53 Lüftelberger Straße
- 2 L 158 Bonner Straße
- 3 L 158 Gudenauer Allee
- 4 L 261 Meckenheimer Allee

Form	blatt 3									Kno	otenpunkt	mit Licht	tsignalanla	age					
		t _U =	100	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	qs	q _{SM}	t _B	n _C	С	g	N_{GE}	WI	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1a G	27	0,270	73	306	8,5	0,0	2000	entf.	1,80	15,0	540,0	0,57	0,00	31	0	31	В
4	Χ	1b G	27	0,270	73	305	8,5	2,6	1971	entf.	1,83	14,8	532,3	0,57	0,00	32	0	32	В
4	Х	1a L _{ges}	10	0,100	90	122	3,4	0,0	2400	entf.	1,50	6,7	240,0	0,51	0,00	43	0	43	С
2	Χ	2a G	35	0,350	65	427	11,9	0,9	1800	entf.	2,00	17,5	630,0	0,68	0,41	28	2	30	В
2	Х	2a L _{ges}	13	0,130	87	138	3,8	8,0	1911	entf.	1,88	6,9	248,4	0,56	0,00	41	0	41	С
3	Χ	3a G	19	0,190	81	94	2,6	12,8	1756	entf.	2,05	9,3	333,6	0,28	0,00	35	0	35	В
3	Х	3a L _{ges}	19	0,190	81	173	4,8	0,0	1800	entf.	2,00	9,5	342,0	0,51	0,00	36	0	36	С
3	Χ	3b L _{ges}	19	0,190	81	172	4,8	4,6	1761	entf.	2,04	9,3	334,5	0,51	0,00	36	0	36	С
1	Х	4a G	17	0,170	83	187	5,2	0,5	2000	entf.	1,80	9,4	340,0	0,55	0,00	38	0	38	С
1	Х	4a L _{ges}	8	0,080	92	36	1,0	2,8	2482	entf.	1,45	5,5	198,6	0,18	0,00	43	0	43	С

Qualitätsstufe C

1. Fahrstreifen	1a G	1G _{/R}	$1_{G/R}$	1a L	2a G	$2G_{/R}$	$2_{G/R}$	2a L	3a G	$3G_{/R}$	$3_{G/}R$	3a L	4a G	$4G_{/R}$	$4_{G/R}$	4a L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	0,0	0,0	0,0	0,0	0,9	0,0	0,0	8,0	12,8	0,0	0,0	0,0	0,5	0,0	0,0	2,8
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,96	0,88	0,99	0,99	0,99	0,99	0,99	0,99	0,99
Anteil > 15%	1,00	1,00	1,00	1,00	0,99	1,00	1,00	0,89	0,84	1,00	1,00	1,00	0,99	1,00	1,00	0,96
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	1,00	0,90	1,00	1,00	0,96	0,88	1,00	1,00	0,90	1,00	1,00	1,00	0,89

2. Fahrstreifen	1b G	1G _{/R}	1 _{G/} R	1b L	2b G	$2G_{/R}$	$2_{G/R}$	2b L	3b G	3G _{/R}	$3_{G/R}$	3b L	4b G	4G _{/R}	4 _{G/} R	4b L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	2,6	0,0	0,0	0,0	0,9	0,0	0,0	8,0	12,8	0,0	0,0	4,6	0,5	0,0	0,0	2,8
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,96	0,88	0,99	0,99	0,98	0,99	0,99	0,99	0,99
Anteil > 15%	0,96	1,00	1,00	1,00	0,99	1,00	1,00	0,89	0,84	1,00	1,00	0,94	0,99	1,00	1,00	0,96
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,99	1,00	1,00	1,00	0,90	1,00	1,00	0,96	0,88	1,00	1,00	0,88	1,00	1,00	1,00	0,89

Prognosefall 1 mit Knotenumbau - Spitzenstunde morgens Signalisierungszustand mit Umlaufzeit 90 sek.

Zuf.

- K 53 Lüftelberger Straße
 L 158 Bonner Straße
- 3 L 158 Gudenauer Allee
- 4 L 261 Meckenheimer Allee

Form	blatt 3									Kno	otenpunk	t mit Licht	signalanla	age					
		t _U =	90	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	ts	q	m	SV	qs	q _{SM}	t _B	n _C	С	g	N_{GF}	Wı	WII	W _{qes}	QSV
						·											-	9	
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1a G	17	0,189	73	229	5,7	0,0	2000	entf.	1,80	9,4	377,8	0,61	0,00	33	0	33	В
4	Χ	1b G	17	0,189	73	228	5,7	6,2	1939	entf.	1,86	9,2	366,2	0,62	0,00	34	0	34	В
4	Х	1a L _{ges}	5	0,056	85	56	1,4	14,9	2431	entf.	1,48	3,4	135,1	0,41	0,00	41	0	41	С
2	Х	2a G	40	0,444	50	672	16,8	2,1	1777	entf.	2,03	19,7	789,7	0,85	2,96	22	14	36	В
2	Х	2a L _{ges}	19	0,211	71	233	5,8	8,1	1909	entf.	1,89	10,1	403,0	0,58	0,00	32	0	32	В
3	Χ	3a G	19	0,211	71	184	4,6	7,0	1928	entf.	1,87	10,2	407,0	0,45	0,00	31	0	31	В
3	Х	3a L _{ges}	13	0,144	77	175	4,4	0,0	1800	entf.	2,00	6,5	260,0	0,67	0,35	36	5	41	С
3	Χ	3b L _{ges}	13	0,144	77	174	4,4	8,0	1720	entf.	2,09	6,2	248,4	0,70	0,77	37	11	48	С
1	Χ	4a G	13	0,144	77	84	2,1	10,5	1849	entf.	1,95	6,7	267,1	0,31	0,00	35	0	35	В
1	X	4a L _{ges}	6	0,067	84	13	0,3	38,5	1712	entf.	2,10	2,9	114,1	0,11	0,00	40	0	40	С

Qualitätsstufe C

1. Fahrstreifen	1a G	1G _{/R}	1 _{G/} R	1a L	2a G	2G _{/R}	$2_{G}/R$	2a L	3a G	3G _{/R}	$3_{G/}R$	3a L	4a G	4G _{/R}	4 _{G/} R	4a L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	0,0	0,0	0,0	14,9	2,1	0,0	0,0	8,1	7,0	0,0	0,0	0,0	10,5	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,81	0,99	0,99	0,99	0,95	0,96	0,99	0,99	0,99	0,92	0,99	0,99	-25,94
Anteil > 15%	1,00	1,00	1,00	0,82	0,97	1,00	1,00	0,89	0,90	1,00	1,00	1,00	0,86	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	0,81	0,89	1,00	1,00	0,95	0,96	1,00	1,00	0,90	0,92	1,00	1,00	0,57
Angleichungstaktor	1,00	1,00	1,00	0,61	0,09	1,00	1,00	0,93	0,90	1,00	1,00	0,90	0,92	1,00	1,00	0,57

2. Fahrstreifen	1b G	1G _{/R}	$1_{G}/R$	1b L	2b G	2G _{/R}	$2_{G/R}$	2b L	3b G	3G _{/R}	$3_{G/}R$	3b L	4b G	4G _{/R}	$4_{G/R}$	4b L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	6,2	0,0	0,0	14,9	2,1	0,0	0,0	8,1	7,0	0,0	0,0	8,0	10,5	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,97	0,99	0,99	0,81	0,99	0,99	0,99	0,95	0,96	0,99	0,99	0,96	0,92	0,99	0,99	-25,94
Anteil > 15%	0,91	1,00	1,00	0,82	0,97	1,00	1,00	0,89	0,90	1,00	1,00	0,89	0,86	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,97	1,00	1,00	0,81	0,89	1,00	1,00	0,95	0,96	1,00	1,00	0,86	0,92	1,00	1,00	0,57

Prognosefall 1 mit Knotenumbau - Spitzenstunde nachmittags Signalisierungszustand mit Umlaufzeit 100 sek.

Zuf.

- K 53 Lüftelberger Straße
 L 158 Bonner Straße
- 3 L 158 Gudenauer Allee
- 4 L 261 Meckenheimer Allee

Form	blatt 3									Kno	otenpunkt	t mit Licht	signalanla	age					
		t _U =	100	sek	Τ=	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	qs	q _{SM}	t _B	n_{C}	С	g	N_{GE}	WI	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1a G	27	0,270	73	385	10,7	0,0	2000	entf.	1,80	15,0	540,0	0,71	0,94	33	6	39	С
4	Χ	1b G	27	0,270	73	384	10,7	2,0	1975	entf.	1,82	14,8	533,2	0,72	1,05	33	7	40	С
4	Х	1a L _{ges}	10	0,100	90	104	2,9	0,0	2400	entf.	1,50	6,7	240,0	0,43	0,00	42	0	42	С
2	Х	2a G	35	0,350	65	466	12,9	1,1	1800	entf.	2,00	17,5	630,0	0,74	1,34	29	8	36	С
2	Χ	2a L _{ges}	13	0,130	87	162	4,5	6,2	1939	entf.	1,86	7,0	252,1	0,64	0,00	41	0	41	С
3	Χ	3a G	19	0,190	81	96	2,7	4,2	1960	entf.	1,84	10,3	372,4	0,26	0,00	34	0	34	В
3	Χ	3a L _{ges}	19	0,190	81	239	6,6	0,0	1800	entf.	2,00	9,5	342,0	0,70	0,74	38	8	46	С
3	Χ	3b L _{ges}	19	0,190	81	239	6,6	2,0	1777	entf.	2,03	9,4	337,7	0,71	0,87	38	9	47	С
1	Χ	4a G	17	0,170	83	127	3,5	2,4	1973	entf.	1,83	9,3	335,3	0,38	0,00	37	0	37	С
1	Х	4a L _{ges}	8	0,080	92	23	0,6	4,3	2468	entf.	1,46	5,5	197,5	0,12	0,00	43	0	43	С

Qualitätsstufe C

1a G	1G _{/R}	$1_{G/R}$	1a L	2a G	$2G_{/R}$	$2_{G}/R$	2a L	3a G	3G _{/R}	$3_{G/R}$	3a L	4a G	4G _{/R}	$4_{G/R}$	4a L
0,0	0,0	0,0	0,0	1,1	0,0	0,0	6,2	4,2	0,0	0,0	0,0	2,4	0,0	0,0	4,3
1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,97	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,98
1,00	1,00	1,00	1,00	0,98	1,00	1,00	0,91	0,94	1,00	1,00	1,00	0,97	1,00	1,00	0,94
1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,00	1,00	1,00	1,00	0,90	1,00	1,00	0,97	0,98	1,00	1,00	0,90	0,99	1,00	1,00	0,88
	0,0 1,00 0,99 1,00 1,00 1,00 1,00	0,0 0,0 1,00 1,00 0,99 0,99 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 1,00 1,00 1,00 0,99 0,99 0,99 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 0,0 1,00 1,00 1,00 1,00 0,99 0,99 0,99 0,99 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 0,0 1,1 1,00 1,00 1,00 1,00 1,00 0,99 0,99 0,99 0,99 0,99 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 1,1 0,0 1,00 1,00 1,00 1,00 1,00 1,00 0,99 0,99 0,99 0,99 0,99 0,99 0,99 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,90 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 0,0 1,1 0,0 0,0 1,00	0,0 0,0 0,0 0,0 1,1 0,0 0,0 6,2 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,99	0,0 0,0 0,0 1,1 0,0 1,00	0,0 0,0 0,0 1,1 0,0 0,0 6,2 4,2 0,0 1,00	0,0 0,0 0,0 1,1 0,0 0,0 6,2 4,2 0,0 0,0 1,00 <th>0,0 0,0 0,0 1,1 0,0 0,0 6,2 4,2 0,0 0,0 0,0 1,00</th> <th>0,0 0,0 0,0 1,00 1,</th> <th>0,0 0,0 0,0 1,1 0,0 0,0 6,2 4,2 0,0 0,0 0,0 2,4 0,0 1,00</th> <th>0,0 0,0 0,0 1,10 1,00 1,</th>	0,0 0,0 0,0 1,1 0,0 0,0 6,2 4,2 0,0 0,0 0,0 1,00	0,0 0,0 0,0 1,00 1,	0,0 0,0 0,0 1,1 0,0 0,0 6,2 4,2 0,0 0,0 0,0 2,4 0,0 1,00	0,0 0,0 0,0 1,10 1,00 1,

2. Fahrstreifen	1b G	1G _{/R}	$1_{G}/R$	1b L	2b G	2G _{/R}	$2_{G/R}$	2b L	3b G	3G _{/R}	$3_{G/}R$	3b L	4b G	$4G_{/R}$	$4_{G/}R$	4b L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	2,0	0,0	0,0	0,0	1,1	0,0	0,0	6,2	4,2	0,0	0,0	2,0	2,4	0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,97	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,98
Anteil > 15%	0,97	1,00	1,00	1,00	0,98	1,00	1,00	0,91	0,94	1,00	1,00	0,97	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,99	1,00	1,00	1,00	0,90	1,00	1,00	0,97	0,98	1,00	1,00	0,89	0,99	1,00	1,00	0,88

Prognosefall 2 mit Knotenumbau - Spitzenstunde morgens Signalisierungszustand mit Umlaufzeit 90 sek.

Zuf.

- K 53 Lüftelberger Straße
 L 158 Bonner Straße
- 3 L 158 Gudenauer Allee
- 4 L 261 Meckenheimer Allee

Form	blatt 3									Kno	otenpunkt	mit Licht	signalanla	age					
		t _∪ =	90	sek	T=	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q _s	q _{SM}	t _B	n _C	С	g	N_{GE}	WI	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1a G	17	0,189	73	242	6,1	0,0	2000	entf.	1,80	9,4	377,8	0,64	0,00	34	0	34	В
4	Χ	1b G	17	0,189	73	241	6,0	8,6	1899	entf.	1,90	9,0	358,7	0,67	0,33	34	3	37	С
4	X	1a L _{ges}	5	0,056	85	67	1,7	14,9	2431	entf.	1,48	3,4	135,1	0,50	0,00	41	0	41	С
2	Х	2a G	40	0,444	50	720	18,0	2,1	1777	entf.	2,03	19,7	789,7	0,91	4,70	23	21	45	С
2	Х	2a L _{ges}	19	0,211	71	234	5,9	8,1	1909	entf.	1,89	10,1	403,0	0,58	0,00	32	0	32	В
3	Χ	3a G	19	0,211	71	185	4,6	7,0	1928	entf.	1,87	10,2	407,0	0,45	0,00	31	0	31	В
3	Х	3a L _{ges}	13	0,144	77	175	4,4	0,0	1800	entf.	2,00	6,5	260,0	0,67	0,35	36	5	41	С
3	Χ	3b L _{ges}	13	0,144	77	174	4,4	8,0	1720	entf.	2,09	6,2	248,4	0,70	0,77	37	11	48	С
1	Χ	4a G	13	0,144	77	86	2,2	10,5	1849	entf.	1,95	6,7	267,1	0,32	0,00	35	0	35	В
1	X	4a L _{ges}	6	0,067	84	13	0,3	38,5	1712	entf.	2,10	2,9	114,1	0,11	0,00	40	0	40	С

Qualitätsstufe C

Fahrstreifen	1a G	1G _{/R}	$1_{G/R}$	1a L	2a G	$2G_{/R}$	$2_{G}/R$	2a L	3a G	3G _{/R}	$3_{G/R}$	3a L	4a G	4G _{/R}	$4_{G/}R$	4a L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	0,0	0,0	0,0	14,9	2,1	0,0	0,0	8,1	7,0	0,0	0,0	0,0	10,5	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,81	0,99	0,99	0,99	0,95	0,96	0,99	0,99	0,99	0,92	0,99	0,99	-25,94
Anteil > 15%	1,00	1,00	1,00	0,82	0,97	1,00	1,00	0,89	0,90	1,00	1,00	1,00	0,86	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	0,81	0,89	1,00	1,00	0,95	0,96	1,00	1,00	0,90	0,92	1,00	1,00	0,57

2. Fahrstreifen	1b G	1G _{/R}	$1_{G}/R$	1b L	2b G	2G _{/R}	$2_{G/R}$	2b L	3b G	3G _{/R}	$3_{G/}R$	3b L	4b G	4G _{/R}	$4_{G/R}$	4b L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	8,6	0,0	0,0	14,9	2,1	0,0	0,0	8,1	7,0	0,0	0,0	8,0	10,5	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,95	0,99	0,99	0,81	0,99	0,99	0,99	0,95	0,96	0,99	0,99	0,96	0,92	0,99	0,99	-25,94
Anteil > 15%	0,89	1,00	1,00	0,82	0,97	1,00	1,00	0,89	0,90	1,00	1,00	0,89	0,86	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,95	1,00	1,00	0,81	0,89	1,00	1,00	0,95	0,96	1,00	1,00	0,86	0,92	1,00	1,00	0,57

Prognosefall 2 mit Knotenumbau - Spitzenstunde nachmittags Signalisierungszustand mit Umlaufzeit 100 sek.

Zuf.

- K 53 Lüftelberger Straße
 L 158 Bonner Straße
- 3 L 158 Gudenauer Allee
- 4 L 261 Meckenheimer Allee

Form	blatt 3									Kno	otenpunkt	t mit Licht	signalanla	age					
		t _U =	100	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	ts	q	m	SV	$q_{\rm S}$	q _{SM}	t _B	n _C	С	q	N _{GF}	Wı	WII	W _{ges}	QSV
						·				,				Ŭ				9	
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1a G	27	0,270	73	407	11,3	0,0	2000	entf.	1,80	15,0	540,0	0,75	1,55	33	10	44	С
4	Χ	1b G	27	0,270	73	406	11,3	3,0	1969	entf.	1,83	14,8	531,6	0,76	1,70	34	12	45	С
4	Х	1a L _{ges}	10	0,100	90	124	3,4	4,0	2354	entf.	1,53	6,5	235,4	0,53	0,00	43	0	43	С
2	Х	2a G	35	0,350	65	499	13,9	1,2	1800	entf.	2,00	17,5	630,0	0,79	2,11	29	12	41	С
2	Х	2a L _{ges}	13	0,130	87	162	4,5	6,2	1939	entf.	1,86	7,0	252,1	0,64	0,00	41	0	41	С
3	Χ	3a G	19	0,190	81	97	2,7	4,2	1960	entf.	1,84	10,3	372,4	0,26	0,00	35	0	35	В
3	Х	3a L _{ges}	19	0,190	81	239	6,6	0,0	1800	entf.	2,00	9,5	342,0	0,70	0,74	38	8	46	С
3	Χ	3b L _{ges}	19	0,190	81	239	6,6	2,0	1777	entf.	2,03	9,4	337,7	0,71	0,87	38	9	47	С
1	Χ	4a G	17	0,170	83	130	3,6	2,3	1973	entf.	1,82	9,3	335,4	0,39	0,00	37	0	37	С
1	Χ	4a L _{ges}	8	0,080	92	23	0,6	4,3	2468	entf.	1,46	5,5	197,5	0,12	0,00	43	0	43	С

Qualitätsstufe

С

1. Fahrstreifen	1a G	1G _{/R}	$1_{G/R}$	1a L	2a G	$2G_{/R}$	$2_{G/}R$	2a L	3a G	$3G_{/R}$	$3_{G/}R$	3a L	4a G	$4G_{/R}$	$4_{G/}R$	4a L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	0,0	0,0	0,0	4,0	1,2	0,0	0,0	6,2	4,2	0,0	0,0	0,0	2,3	0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,97	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,98
Anteil > 15%	1,00	1,00	1,00	0,94	0,98	1,00	1,00	0,91	0,94	1,00	1,00	1,00	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	0,98	0,90	1,00	1,00	0,97	0,98	1,00	1,00	0,90	0,99	1,00	1,00	0,88

2. Fahrstreifen	1b G	1G _{/R}	$1_{G/R}$	1b L	2b G	$2G_{/R}$	$2_{G/R}$	2b L	3b G	3G _{/R}	$3_{G/}R$	3b L	4b G	4G _{/R}	$4_{G/}R$	4b L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	3,0	0,0	0,0	4,0	1,2	0,0	0,0	6,2	4,2	0,0	0,0	2,0		0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,98	0,99	0,99	0,98	0,99	0,99	0,99	0,97	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,98
Anteil > 15%	0,96	1,00	1,00	0,94	0,98	1,00	1,00	0,91	0,94	1,00	1,00	0,97	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,98	1,00	1,00	0,98	0,90	1,00	1,00	0,97	0,98	1,00	1,00	0,89	0,99	1,00	1,00	0,88

Prognosefall 3 mit Knotenumbau - Spitzenstunde morgens Signalisierungszustand mit Umlaufzeit 90 sek.

Zuf.

- K 53 Lüftelberger Straße
 L 158 Bonner Straße
- 3 L 158 Gudenauer Allee
- 4 L 261 Meckenheimer Allee

Form	blatt 3					Knotenpunkt mit Lichtsignalanlage T = 3600 sek S													
		t _∪ =	90	sek	T=	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q _S	q _{SM}	t _B	n _C	С	g	N_{GE}	WI	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[F ₇]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[F ₇]	[Fz/h]	[-]	[F ₇]	[s]	[s]	[s]	[-]
4	Х	1a G	17	0,189	73	186	4,7	0,0	2000	entf.	1,80	9,4	377,8	0,49	0,00	33	0	33	В
4	X	1b G	17	0,189	73	186	4,7	8,6	1899	entf.	1,90	9,0	358,7	0,52	0,00	33	0	33	В
4	Х	1a L _{ges}	5	0,056	85	70	1,8	12,9	2626	entf.	1,37	3,6	145,9	0,48	0,00	41	0	41	С
2	X	2a G	40	0,444	50	420	10,5	2,1	1777	entf.	2,03	19,7	789,7	0,53	0,00	18	0	18	Α
2	Х	2a L _{ges}	19	0,211	71	125	3,1	8,0	1911	entf.	1,88	10,1	403,4	0,31	0,00	30	0	30	В
3	Χ	3a G	20	0,222	70	336	8,4	7,1	1926	entf.	1,87	10,7	428,1	0,78	2,03	33	17	50	С
3	X	3a L _{ges}	13	0,144	77	153	3,8	0,0	1800	entf.	2,00	6,5	260,0	0,59	0,00	36	0	36	В
3	Х	3b L _{ges}	13	0,144	77	153	3,8	8,4	1713	entf.	2,10	6,2	247,4	0,62	0,00	36	0	36	С
1	Χ	4a G	13	0,144	77	182	4,6	10,0	1864	entf.	1,93	6,7	269,3	0,68	0,39	37	5	42	С
1	X	4a L _{ges}	5	0,056	85	13	0,3	38,5	1712	entf.	2,10	2,4	95,1	0,14	0,00	40	0	40	С

Qualitätsstufe C

1. Fahrstreifen	1a G	1G _{/R}	$1_{G/R}$	1a L	2a G	2G _{/R}	$2_{G/}R$	2a L	3a G	$3G_{/R}$	$3_{G}/R$	3a L	4a G	4G _{/R}	$4_{G/}R$	4a L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	0,0	0,0	0,0	12,9	2,1	0,0	0,0	8,0	7,1	0,0	0,0	0,0	10,0	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,99	0,99	0,99	0,88	0,99	0,99	0,99	0,96	0,96	0,99	0,99	0,99	0,93	0,99	0,99	-25,94
Anteil > 15%	1,00	1,00	1,00	0,84	0,97	1,00	1,00	0,89	0,90	1,00	1,00	1,00	0,87	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	1,00	1,00	1,00	0,88	0,89	1,00	1,00	0,96	0,96	1,00	1,00	0,90	0,93	1,00	1,00	0,57

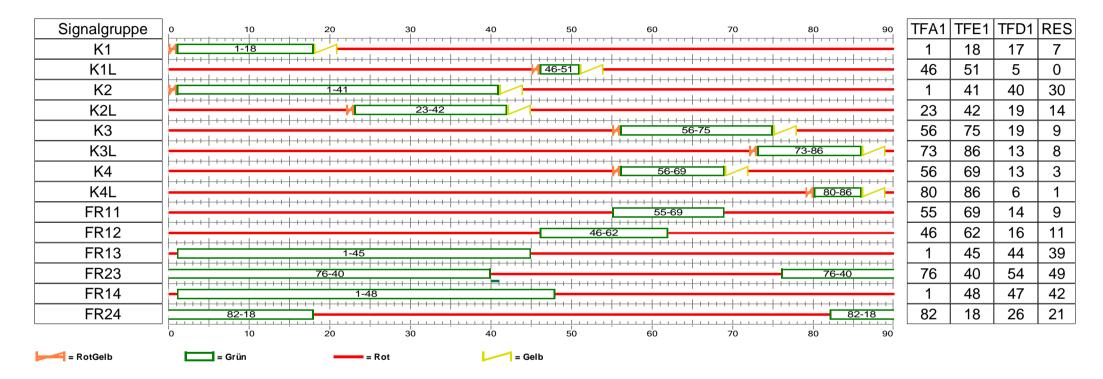
2. Fahrstreifen	1b G	1G _{/R}	$1_{G/R}$	1b L	2b G	2G _{/R}	$2_{G/R}$	2b L	3b G	3G _{/R}	$3_{G/}R$	3b L	4b G	4G _{/R}	$4_{G/}R$	4b L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	8,6	0,0	0,0	12,9	2,1	0,0	0,0	8,0	7,1	0,0	0,0	8,4	10,0	0,0	0,0	38,5
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,95	0,99	0,99	0,88	0,99	0,99	0,99	0,96	0,96	0,99	0,99	0,95	0,93	0,99	0,99	-25,94
Anteil > 15%	0,89	1,00	1,00	0,84	0,97	1,00	1,00	0,89	0,90	1,00	1,00	0,89	0,87	1,00	1,00	0,63
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,95	1,00	1,00	0,88	0,89	1,00	1,00	0,96	0,96	1,00	1,00	0,86	0,93	1,00	1,00	0,57

Prognosefall 3 mit Knotenumbau - Spitzenstunde nachmittags Signalisierungszustand mit Umlaufzeit 100 sek.

Zuf.

- K 53 Lüftelberger Straße
 L 158 Bonner Straße
- 3 L 158 Gudenauer Allee
- 4 L 261 Meckenheimer Allee

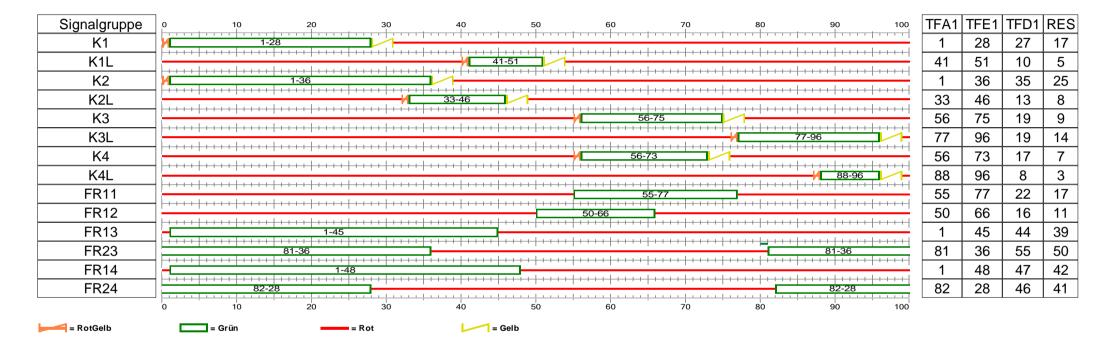
Form	blatt 3									Kno	otenpunkt	mit Licht	signalanl	age					
		t _∪ =	100	sek	T =	3600	sek												
Zuf.	gew.	Bez.	t _F	f	t _S	q	m	SV	q_S	q _{SM}	t _B	n _C	С	g	N_{GE}	W _I	W _{II}	W _{ges}	QSV
			[s]	[-]	[s]	[Fz/h]	[Fz]	[%]	[Fz/h]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[s]	[s]	[s]	[-]
4	Χ	1a G	24	0,240	76	313	8,7	0,0	2000	entf.	1,80	13,3	480,0	0,65	0,03	34	0	34	В
4	Χ	1b G	24	0,240	76	313	8,7	3,2	1967	entf.	1,83	13,1	472,2	0,66	0,19	34	1	36	В
4	Х	1a L _{ges}	8	0,080	92	131	3,6	3,1	2755	entf.	1,31	6,1	220,4	0,59	0,00	44	0	44	С
2	Х	2a G	32	0,320	68	291	8,1	1,4	1800	entf.	2,00	16,0	576,0	0,51	0,00	28	0	28	В
2	Χ	2a L _{ges}	12	0,120	88	87	2,4	6,9	1929	entf.	1,87	6,4	231,5	0,38	0,00	41	0	41	С
3	Χ	3a G	23	0,230	77	176	4,9	4,0	1962	entf.	1,84	12,5	451,2	0,39	0,00	33	0	33	В
3	Х	3a L _{ges}	21	0,210	79	210	5,8	0,0	1800	entf.	2,00	10,5	378,0	0,56	0,00	35	0	35	В
3	Х	3b L _{ges}	21	0,210	79	209	5,8	19,2	1398	entf.	2,58	8,2	293,5	0,71	0,94	37	12	48	С
1	Χ	4a G	20	0,200	80	274	7,6	2,2	1974	entf.	1,82	11,0	394,7	0,69	0,67	37	6	43	С
1	Χ	4a L _{ges}	12	0,120	88	23	0,6	4,3	1763	entf.	2,04	5,9	211,6	0,11	0,00	39	0	39	С


Qualitätsstufe C

1a G	1G _{/R}	$1_{G/R}$	1a L	2a G	$2G_{/R}$	$2_{G}/R$	2a L	3a G	3G _{/R}	$3_{G/}R$	3a L	4a G	4G _{/R}	$4_{G/R}$	4a L
0,0	0,0	0,0	3,1	1,4	0,0	0,0	6,9	4,0	0,0	0,0	0,0	2,2	0,0	0,0	4,3
1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
0,99	0,99	0,99	0,98	0,99	0,99	0,99	0,96	0,98	0,99	0,99	0,99	0,99	0,99	0,99	0,98
1,00	1,00	1,00	0,96	0,98	1,00	1,00	0,91	0,94	1,00	1,00	1,00	0,97	1,00	1,00	0,94
1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,00	1,00	1,00	0,98	0,90	1,00	1,00	0,96	0,98	1,00	1,00	0,90	0,99	1,00	1,00	0,88
	0,0 1,00 0,99 1,00 1,00 1,00 1,00	0,0 0,0 1,00 1,00 0,99 0,99 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 1,00 1,00 1,00 0,99 0,99 0,99 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 3,1 1,00 1,00 1,00 1,00 0,99 0,99 0,99 0,98 1,00 1,00 1,00 0,96 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 3,1 1,4 1,00 1,00 1,00 1,00 1,00 0,99 0,99 0,99 0,98 0,99 1,00 1,00 1,00 0,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 3,1 1,4 0,0 1,00 1,00 1,00 1,00 1,00 1,00 0,99 0,99 0,99 0,98 0,99 0,99 1,00 1,00 1,00 0,96 0,98 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,90 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,0 0,0 0,0 3,1 1,4 0,0 0,0 1,00	0,0 0,0 0,0 3,1 1,4 0,0 0,0 6,9 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,96 0,98 1,00 1,00 0,91	0,0 0,0 0,0 3,1 1,4 0,0 0,0 6,9 4,0 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 0,98 0,99 0,99 0,99 0,98 0,98 1,00 1,00 0,91 0,94 1,00	0,0 0,0 0,0 3,1 1,4 0,0 0,0 6,9 4,0 0,0 1,00	0,0 0,0 0,0 3,1 1,4 0,0 0,0 6,9 4,0 0,0 0,0 1,00	0,0 0,0 0,0 3,1 1,4 0,0 0,0 6,9 4,0 0,0 0,0 0,0 1,00	0,0 0,0 0,0 3,1 1,4 0,0 1,00<	0,0 0,0 0,0 3,1 1,4 0,0 0,0 1,00 </th <th>0,0 0,0 0,0 3,1 1,4 0,0 0,0 6,8 4,0 0,0 0,0 0,0 2,2 0,0 0,0 1,00</th>	0,0 0,0 0,0 3,1 1,4 0,0 0,0 6,8 4,0 0,0 0,0 0,0 2,2 0,0 0,0 1,00

2. Fahrstreifen	1b G	1G _{/R}	$1_{G/R}$	1b L	2b G	2G _{/R}	$2_{G/}R$	2b L	3b G	3G _{/R}	$3_{G/}R$	3b L	4b G	4G _{/R}	$4_{G/R}$	4b L
Schwerverkehrsanteil																
in Abhängigkeit von SV [%]	3,2	0,0	0,0	3,1	1,4	0,0	0,0	6,9	4,0	0,0	0,0	19,2	2,2	0,0	0,0	4,3
Anrteil < 2%	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Anteil 2 bis 15%	0,98	0,99	0,99	0,98	0,99	0,99	0,99	0,96	0,98	0,99	0,99	0,53	0,99	0,99	0,99	0,98
Anteil > 15%	0,95	1,00	1,00	0,96	0,98	1,00	1,00	0,91	0,94	1,00	1,00	0,78	0,97	1,00	1,00	0,94
Fahrstreifenbreite	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Abbiegeradius	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	0,90
Fahrbahnlängsneigung	1,00	1,00	1,00	1,00	0,90	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fußgängerverkehr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Angleichungsfaktor	0,98	1,00	1,00	0,98	0,90	1,00	1,00	0,96	0,98	1,00	1,00	0,70	0,99	1,00	1,00	0,88

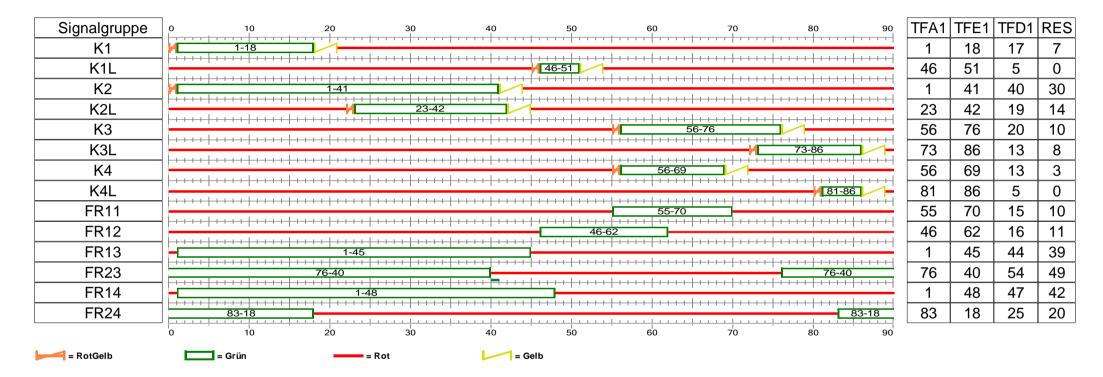
Signalprogramm: V_DIA P1 P2 (90 s)


Name	tU	Nr.	ZentralenNr.	Art	Versatz	Belastungstabelle	ZZMatrix	VBMatrix	VEMatrix	ZWD	
V_DIA P1 P2	90	1		SG			ZM1			0	l

Bearbeiter	AB	Auftrag/Notiz	Stand	15.01.2013
Ausgabe	15.01.13	Dateiname MEC_LZA 6024.sip	Blatt	1/4

Signalprogramm: N_DIA P1 P2 (100 s)

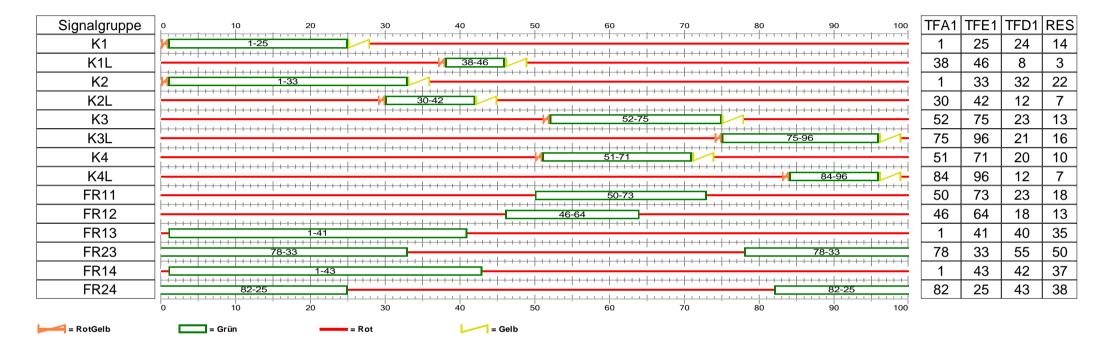
Name	tU	Nr.	ZentralenNr.	Art	Versatz	Belastungstabelle	ZZMatrix	VBMatrix	VEMatrix	ZWD	l
N_DIA P1 P2	100	5		SG			ZM1			0	

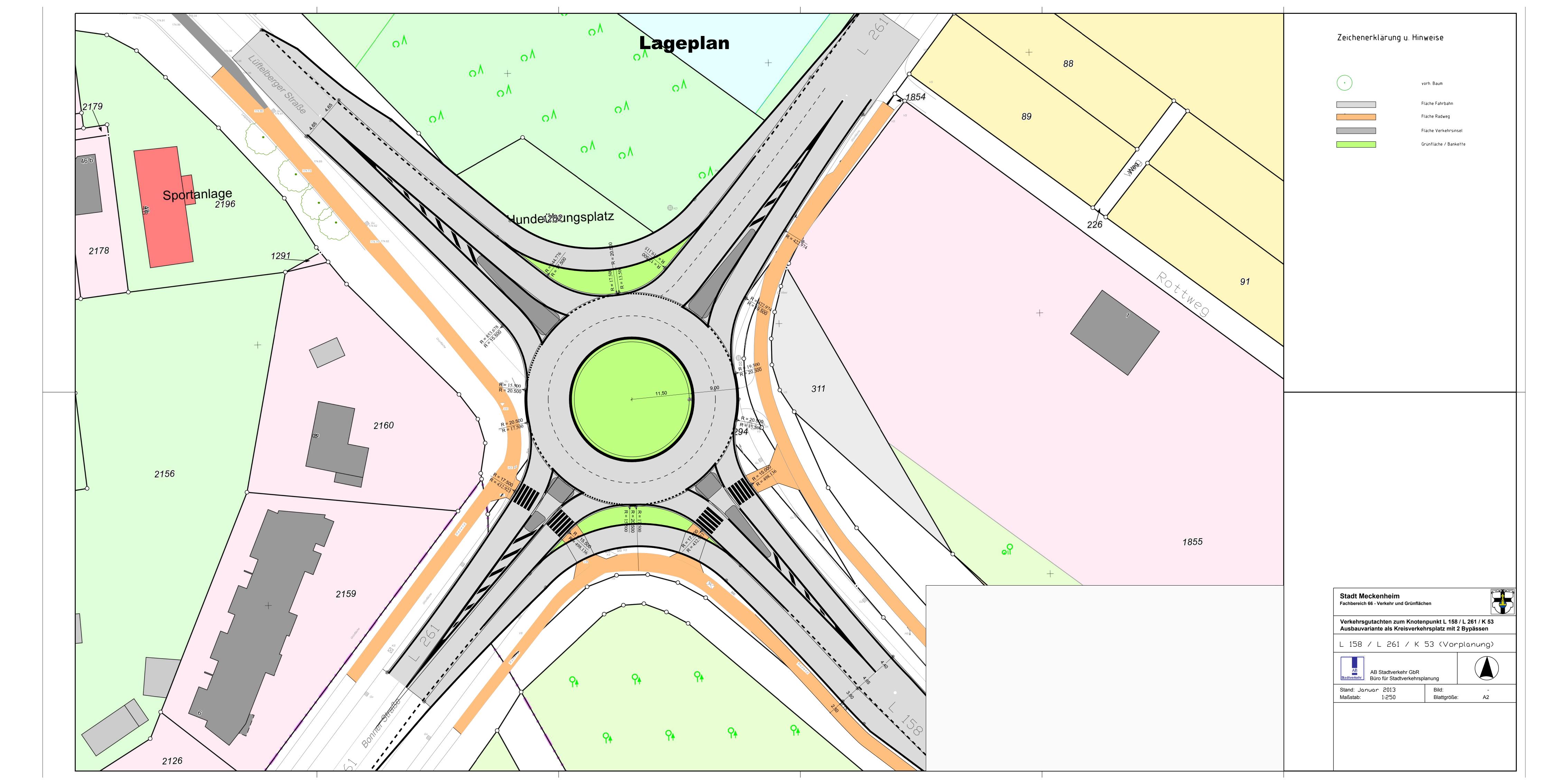


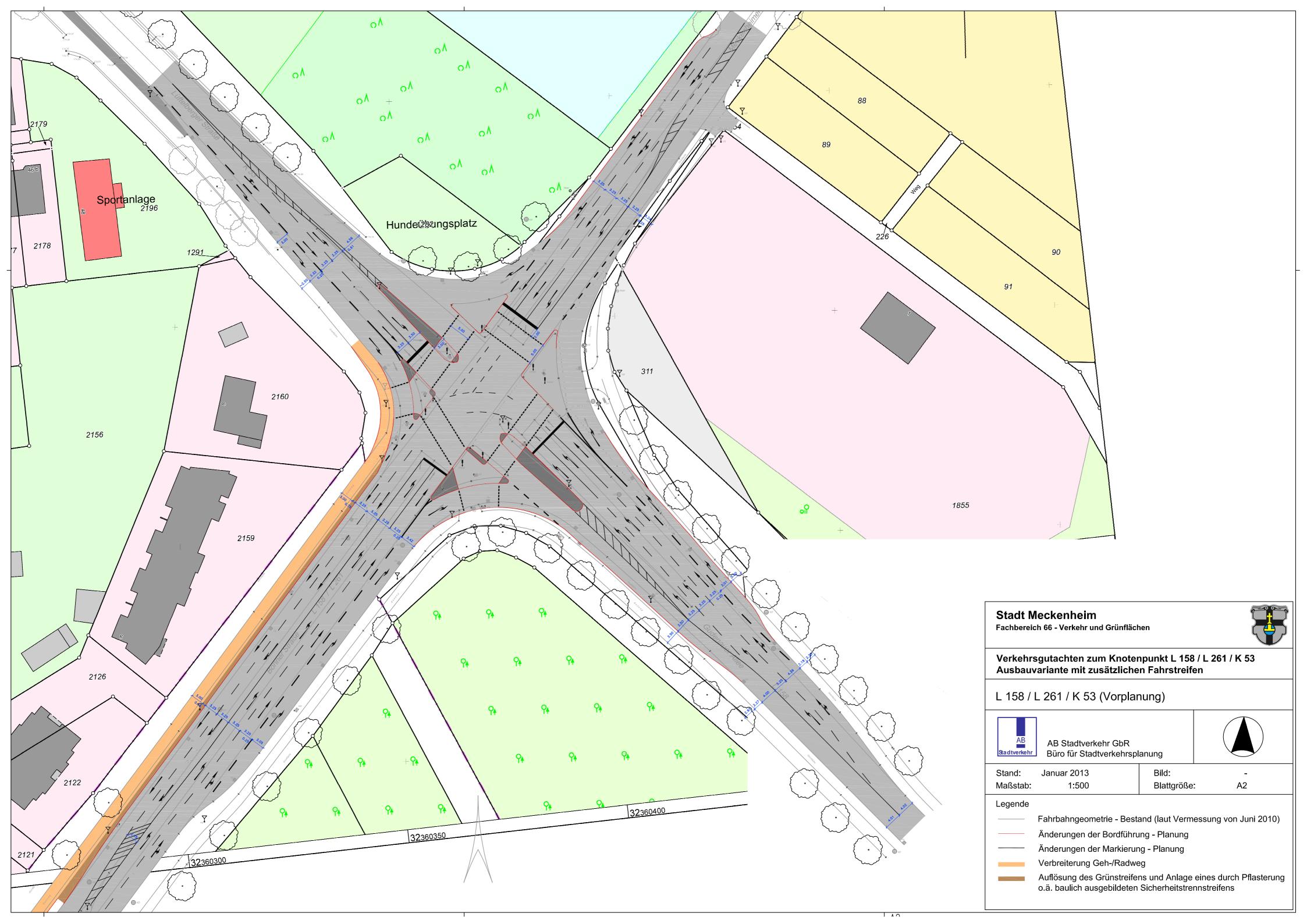
 Bearbeiter
 AB
 Auftrag/Notiz
 Stand
 15.01.2013

 Ausgabe
 15.01.13
 Dateiname
 MEC_LZA 6024.sip
 Blatt
 2 / 4

Signalprogramm: V_P3 (90 s)


Name	tU	Nr.	ZentralenNr.	Art	Versatz	Belastungstabelle	ZZMatrix	VBMatrix	VEMatrix	ZWD	
V_P3	90	2		SG			ZM1			0	


Bearbeiter	AB	Auftrag/Notiz		Stand	15.01.2013
Ausgabe	15.01.13	Dateiname MEC_LZA	A 6024.sip	Blatt	3/4


Signalprogramm: N_P3 (100 s)

Name	tU	Nr.	ZentralenNr.	Art	Versatz	Belastungstabelle	ZZMatrix	VBMatrix	VEMatrix	ZWD	ı
N_P3	100	3		SG			ZM1			0	I

	Auftrag/Notiz		Stand	15.01.2013	
Ausgabe	15.01.13	Dateiname	MEC_LZA 6024.sip	Blatt	4/4

Stadt Meckenheim Knotenpubnkt L 158 / L 261 / K 53 Kostenschätzung Ausbauvariante Kreisverkehrsplatz mit 3 Bypässen

		Menge	Einheit	EP	GP
1.	Algemeine Tiefbauarbeiten				
1.1.	Baustelleneinrichtung				
1.1 1.	Baustelle einrichten		Psch	12.500,00	12.500,00
1.1 2.	Baustelle räumen	1,00	Psch	750,00	750,00
1.1 3.	Verkehrsgenehmigung einhollen		Psch	275,00	275,00
1.1 4.	Verkehreinrichtung aufstellen, abbauen.	1,00	Stk	2.500,00	2.500,00
1.2.	Kanalbauarbeiten				
1.2.1.	Erdarbeiten				
1.2.1.1.	Bodenaushub herstellen.	2.075,00	m³	12,75	26.456,25
1.2.1.2.	Kiessand für Leitungszone	50,00		32,00	1.600,00
1.2.1.3.	Füllkies bis gepl. UK Straßenoberbau	40,00	m³	21,00	840,00
1.2.2.	Verbau				
1.2.2.1.	Verbau herstellen, vorhalten u. abbauen.	125,00	m²	5,75	718,75
1.2.2.1.	versua herotelien, verhalten a. assauen.	120,00		0,70	7 10,70
1.2.3.	Rohre und Formstücke				
1.2.3. 1.	PE- Rohr DN 150 liefern u. einbauen	50,00		35,00	1.750,00
1.2.3. 2.	Bögen als Zulage zur Pos. 1	24,00	St.	65,00	1.560,00
1.2.4.	Schachtbauwerke, SK				
1.2.4. 1.	Auflagerring, h=10 cm	12,00	Stk	22,50	270,00
1.2.4. 2.	Schachtabdeckung offen	2,00		285,00	570,00
1.2.4. 3.	Schachtabdeckung geschlossen	2,00		285,00	570,00
1.2.4. 4.	Straßeneinlauf, komplett mit Aufsatz	12,00		475,00	5.700,00
	Charles and the second	12,00			000,00
1.3.	Straßenbauarbeiten				
1.3.1.	Abbrucharbeiten				
1.3.1.1.	Bitu.Befestigung aufnehmen bis 15 cm, Zulage	4.750,00	m²	5,75	27.312,50
1.3.1.2.	Bitu.Befestigung aufnehmen bis 25 cm, Zulage	1.000,00	m²	4,50	4.500,00
1.3.1.3.	Pflaster, Platten aufnehmen, Zulage	250,00	m²	4,25	1.062,50
1.3.1.4.	Bordsteine aufnehmen	350,00	m	1,25	437,50
1.3.1.5.	Trennschnitt Bitudecke	50,00	m	9,75	487,50
1.3.1.6	Asphalt für Deckschicht fräsen	200,00	m²	3,25	650,00
1.3.1.7	Signalgeber, Maste,				
	Kabel und Schächte rückbauen	1,00	psch	12.500,00	12.500,00
1.3.2.	Erdarbeiten				
1.3.2. 1.	Bodenabtrag als Straßenprofilierung	250,00	m³	11,25	2.812,50
1.3.2. 2.	Boden einbauen, angeliefert	250,00		7,25	1.812,50
1.3.2. 3.	Planum herstellen, +/- 1 cm	5.750,00		1,50	8.625,00
1.3.3.	Straßenbefestigung				
1.3.3.1.	Frostschutzschicht i.M.30 cm	2.475,00	m²	7,50	18.562,50
1.3.3.2.	Schottertragschicht i.M 15 cm	6.250,00		5,25	32.773,13
1.3.3.3.	Asphalttragschicht 14 cm	5.400,00		16,25	87.750,00
1.3.3.4.	Asphalttragschicht 8 cm	875,00		10,75	9.406,25
1.3.3.5.	Asphaltbinder 8,5 cm	5.400,00		10,25	55.350,00
1.3.3.6.	Asphaltbeton 2,5 cm Radweg	875,00		5,75	5.031,25
		5.400,00		8,75	47.250,00
1337	150mmasuxasonau 5 5 cm				
1.3.3.7. 1.3.3.8.	Splittmastixasphalt 3,5 cm Streetasphalt	175,00		65,00	11.375,00

1.3.4.	Borde, Markierung, Straßenmobiliar				
1.3.4.1.	1-zeilige Rinne 16/24/14	750,00	m	12,75	9.562,50
1.3.4.2.	Entwässerungsmulde	75,00	m	42,50	3.187,50
1.3.4.3.	Bordsteine F 20/25	500,00	m	32,50	16.250,00
1.3.4.4.	Bordsteine F 30/35	75,00	m	40,00	3.000,00
1.3.4.5.	Bordsteine T 8/20	25,00	m	13,75	343,75
1.3.4.6.	Taktile Elemente liefern einbauen	25,00	m²	95,00	2.375,00
1.3.4.7.	Fahrbahnmarkierung Schmalstrich	800,00	m	3,75	3.000,00
1.3.4.8.	Fahrbahnmarkierung Breitstrich	250,00	m	7,25	1.812,50
1.3.4.9.	Straßenbeleuchtung,				
	Standardlampen Stadt Meckenheim	8,00	Stk	1.175,00	9.400,00
1.3.4.10.	Beleuchtungskabel liefern und verlegen	250,00	m	5,25	1.312,50
1.4.	Versorgungstrassen				
1.4.2.	Erdarbeiten				
1.4.2.1.	Bodenabtrag Graben 0,6 x 1,00 m	250,00	m³	17,50	4.375,00
1.4.2.2.	Kiessand für Leitungszone	150,00		27,50	4.125,00
1.5.	Garten u. Landschaftsbauarbeiten				
1.5.1.	Vorbereitende Arbeiten				
1.5.1.1.	Bäume fällen, 60-90 cm	1,00	Stk	85,00	85,00
1.5.2.	Erdarbeiten				
1.5.2.1.	MuBo liefern und einbauen, 20 cm	400,00	m²	6,25	2.500,00
1.5.2.2.	Planum herstellen	5.650,00	m²	1,20	6.780,00
1.5.2.3.	Bankette herstellen.	425,00	m²	12,50	5.312,50
1.5.3.	Pflanzarbeiten				
1.5.3.1.	Fläche einsäen	1.085,00	m²	1,50	1.627,50
1.5.3.2	Pflanzfläche KV Innenfläche	400,00		20,00	8.000,00
				netto	471.591,88 €
				MwSt	89.602,46 €
		Summe:		brutto	561.194,33 €
		Odinine.		Mullo	001.10 1 ,00 C

Kostenschätzung Kreisverkehrsplatz mit 2 Bypässen	Summe:	Abzug brutto	50.872,50 € 510.321,83 €
		Abzug netto	42.750,00 €
		Preis je m²	50,00€
	Rad	dweg Fläche	175,00
		Preis je m²	85,00 €
Kostenreduktion bei Kreisverkehrsplatz mit 2 Bypässen	Fahrl	oahn Fläche	400,00

Stadt Meckenheim Knotenpubnkt L 158 / L 261 / K 53

Kostenschätzung Ausbauvariante Knoten mit zusätzlichen Fahrstreifen und angepasster LSA

		Menge	Einheit	EP	GP
1.	Algemeine Tiefbauarbeiten				
1.1.	Baustelleneinrichtung				
1.1.1.	Baustelle einrichten	1,00	Psch	6.250,00	6.250,00
1.1.2.	Baustelle räumen		Psch	750,00	
1.1.3.	Verkehrsgenehmigung einholen	1,00	Psch	275,00	275,00
1.1.4.	Verkehreinrichtung aufstellen, abbauen	1,00	Stk	1.500,00	
1.2.	Kanalbauarbeiten				
1.2.1.	Erdarbeiten				
1.2.1.1.	Bodenaushub herstellen.	25,00	m³	12,75	318,75
1.2.1.2.	Kiessand für Leitungszone	15,00	m³	32,00	
1.2.1.3.	Füllkies bis gepl. UK Straßenoberbau	15,00		21,00	
1.2.2.	Verbau				
1.2.2.1.	Verbau herstellen, vorhalten u. abbauen	40,00	m²	5,75	230,00
1.2.3.	Rohre und Formstücke				
1.2.3.1.	PE- Rohr DN 150 liefern u. einbauen	15,00	m	35,00	525,00
1.2.3.1.	Bögen als Zulage zur Pos. 1	20,00		65,00	
1.2.3.2.	Bogeri als Zulage zur Pos. 1	20,00	Si.	65,00	1.300,00
1.2.4.	Schachtbauwerke, SK				
1.2.4.1.	Auflagerring, h=10 cm	3,00		22,50	67,50
1.2.4.2.	Schachtabdeckung neu	1,00		285,00	
1.2.4.3.	Straßeneinlauf, komplett mit Aufsatz	8,00	Stk	475,00	3.800,00
1.3.	Straßenbauarbeiten				
1.3.1.	Abbrucharbeiten				
1.3.1.1.	Bitu.Befestigung aufnehmen bis 15 cm, Zulage	1.650,00	m²	5,75	9.487,50
1.3.1.2.	Bitu.Befestigung aufnehmen bis 25 cm, Zulage	600,00		4,50	
1.3.1.3.	Pflaster, Platten aufnehmen, Zulage	250,00		4,25	
1.3.1.4.	Bordsteine aufnehmen	350,00		1,25	
1.3.1.5.	Trennschnitt Bitudecke	750,00	m	9,75	7.312,50
1.3.1.6	Asphalt für Deckschichtanpassung				
	an Bestand fräsen	200,00	m²	2,75	550,00
1.3.2.	Erdarbeiten				
1.3.2.1.	Bodenaushub herstellen.	975,00		12,75	12.431,25
1.3.2.2.	Planum herstellen, +/- 1 cm	2.300,00	m²	1,20	2.760,00
1.3.3.	Straßenbefestigung				
1.3.3.1.	Frostschutzschicht i.M.30 cm	500,00	m²	7,50	3.750,00
1.3.3.2.	Schottertragschicht i.M 15 cm	2.300,00		5,25	
1.3.3.3.	Asphalttragschicht 14 cm	1.800,00		16,25	
1.3.3.4.	Asphalttragschicht 8 cm	500,00		10,75	
1.3.3.5.	Asphaltbinder 8,5 cm	1.800,00		10,25	
1.3.3.6.	Asphaltbeton 2,5 cm Radweg	500,00		5,75	
1.3.3.7.	Splittmastixasphalt 3,5 cm	2.350,00		8,75	
1.3.3.8.	Streetasphalt	135,00		65,00	

1.3.4.	Borde, Markierung, Straßenmobiliar				
1.3.4.1.	1-zeilige Rinne 16/24/14	575,00	m	12,75	7.331,25
1.3.4.2.	Bordsteine F 20/25	575,00		32,50	18.687,50
1.3.4.3.	Bordsteine T 8/20	25,00		13,75	343,75
1.3.4.4.	Taktile Elemente liefern einbauen	20,00		95,00	1.900,00
1.3.4.5.	Fahrbahnmarkierung Schmalstrich	1.250,00	m	3,75	4.687,50
1.3.4.6.	Fahrbahnmarkierung Breitstrich	400,00	m	7,25	2.900,00
1.3.4.7.	Fahrbahnmarkierung Haltelinie	35,00	m	17,50	612,50
1.4.	Versorgungstrassen				
1.4.2.	Erdarbeiten				
1.4.2.1.	Bodenabtrag Graben 0,6 x 1,00 m	250,00	m³	17,50	4.375,00
1.4.2.2.	Kiessand für Leitungszone	150,00	m³	27,50	4.125,00
1.5.	Garten u. Landschaftsbauarbeiten				
1.5.1.	Vorbereitende Arbeiten				
1.5.1.1.	Bäume fällen, 60-90 cm	1,00	Stk	85,00	85,00
1.5.2.	Erdarbeiten				
1.5.2.1.	Bankette herstellen.	425,00	m²	12,50	5.312,50
1.5.3.	Vegetationsarbeiten				
1.5.3.1.	Fläche einsäen	425,00	m²	1,50	637,50
2.	Umbau und Ergänzung Lichtsignalanlage				
2.1.1.1.	Signalgeber, Maste, Kabel und Schächte umbauen	1,00	psch	50.000,00	50.000,00
	Signalgeber und Maste ergänzen				
	Steuergerät und Programmierung anpassen				
	(ggf. Erneuerung Steuergerät)				
				netto	254.947,50
				MwSt	48.440,03
		Summe:		brutto	303.387,53